题目
给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。
在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length 时 C[i] = A[i],且当 i >= 0 时 C[i+A.length] = C[i])
此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], …, C[j],不存在 i <= k1, k2 <= j 其中 k1 % A.length = k2 % A.length)
示例 1:
输入:[1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3
示例 2:
输入:[5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
示例 3:
输入:[3,-1,2,-1]
输出:4
解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4
示例 4:
输入:[3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
示例 5:
输入:[-2,-3,-1]
输出:-1
解释:从子数组 [-1] 得到最大和 -1
提示:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-sum-circular-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
如果没有环形这个条件的话,就是一个简单的求连续子数组的最大和的动态规划。加上环形这个条件之后,首尾相接,那么符合条件的子数组就会分成两种情况:没有从尾部穿越的正常子数组,和从尾部连接到头部的子数组。
第二种情况下,把子数组去除后,剩下的元素就组成了正常的子数组。那只需要先求出正常连续子数组的最小和,再用数组的和减去这个最小和就是第二种情况的最优解。
最后两种情况中的最大值就是答案
由于在用动态规划求连续子数组的和的时候,转移方程只和 dp
数组的前一个元素有关,空间复杂度可以继续优化到 1
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
C++ 代码
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
if (nums.empty())
return 0;
vector<int> dpMax(nums.size());
vector<int> dpMin(nums.size());
dpMax[0] = dpMin[0] = nums[0];
for (int i = 1; i < nums.size(); ++i) {
dpMax[i] = max(nums[i], dpMax[i - 1] + nums[i]);
dpMin[i] = min(nums[i], dpMin[i - 1] + nums[i]);
}
int maxCircle = accumulate(nums.begin(), nums.end(), 0) - *min_element(dpMin.begin(), dpMin.end());
int maxNonCircle = *max_element(dpMax.begin(), dpMax.end());
// printf("maxCircle = %d, maxNonCircle = %d\n", maxCircle, maxNonCircle);
if (maxCircle == 0)
return maxNonCircle;
else
return max(maxCircle, maxNonCircle);
}
};