Leetcode 918. 环形子数组的最大和

该博客介绍了如何解决一个涉及环形数组的动态规划问题,即寻找环形数组中具有最大和的非空子数组。在动态规划的基础上,通过计算连续子数组的最大和与最小和,分别考虑没有穿越环的子数组和穿越环的子数组,最终确定最大和。文章提供了C++代码实现,并讨论了时间复杂度和空间复杂度。
摘要由CSDN通过智能技术生成

本题链接

题目

给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。

在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length 时 C[i] = A[i],且当 i >= 0 时 C[i+A.length] = C[i])

此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], …, C[j],不存在 i <= k1, k2 <= j 其中 k1 % A.length = k2 % A.length)

示例 1:

输入:[1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3

示例 2:

输入:[5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10

示例 3:

输入:[3,-1,2,-1]
输出:4
解释:从子数组 [2,-1,3] 得到最大和 2 + (-1) + 3 = 4

示例 4:

输入:[3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3

示例 5:

输入:[-2,-3,-1]
输出:-1
解释:从子数组 [-1] 得到最大和 -1

提示:

-30000 <= A[i] <= 30000
1 <= A.length <= 30000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-sum-circular-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


思路

如果没有环形这个条件的话,就是一个简单的求连续子数组的最大和的动态规划。加上环形这个条件之后,首尾相接,那么符合条件的子数组就会分成两种情况:没有从尾部穿越的正常子数组,和从尾部连接到头部的子数组。

第二种情况下,把子数组去除后,剩下的元素就组成了正常的子数组。那只需要先求出正常连续子数组的最小和,再用数组的和减去这个最小和就是第二种情况的最优解。

最后两种情况中的最大值就是答案

由于在用动态规划求连续子数组的和的时候,转移方程只和 dp 数组的前一个元素有关,空间复杂度可以继续优化到 1

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

C++ 代码

class Solution {
public:
    int maxSubarraySumCircular(vector<int>& nums) {
        if (nums.empty())
            return 0;
        vector<int> dpMax(nums.size());
        vector<int> dpMin(nums.size());
        dpMax[0] = dpMin[0] = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            dpMax[i] = max(nums[i], dpMax[i - 1] + nums[i]);
            dpMin[i] = min(nums[i], dpMin[i - 1] + nums[i]);
        }
        int maxCircle = accumulate(nums.begin(), nums.end(), 0) - *min_element(dpMin.begin(), dpMin.end());
        int maxNonCircle = *max_element(dpMax.begin(), dpMax.end());
        // printf("maxCircle = %d, maxNonCircle = %d\n", maxCircle, maxNonCircle);
        if (maxCircle == 0)
            return maxNonCircle;
        else
            return max(maxCircle, maxNonCircle);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值