贪心算法与DFS:九度OJ1030

题目1030:毕业bg

题目描述:

    每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为“bg”。参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个bg定义一个“快乐度”。现给定一个bg列表,上面列出每个bg的快乐度、持续长度、bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最大的快乐度。

    例如有4场bg:
    第1场快乐度为5,持续1小时,发起人必须在1小时后离开;
    第2场快乐度为10,持续2小时,发起人必须在3小时后离开;
    第3场快乐度为6,持续1小时,发起人必须在2小时后离开;
    第4场快乐度为3,持续1小时,发起人必须在1小时后离开。
    则获得最大快乐度的安排应该是:先开始第3场,获得快乐度6,在第1小时结束,发起人也来得及离开;再开始第2场,获得快乐度10,在第3小时结束,发起人正好来得及离开。此时已经无法再安排其他的bg,因为发起人都已经离开了学校。因此获得的最大快乐度为16。

    注意bg必须在发起人离开前结束,你不可以中途离开一场bg,也不可以中途加入一场bg。
又因为你的人缘太好,可能有多达30个团体bg你,所以你需要写个程序来解决这个时间安排的问题。

输入:

    测试输入包含若干测试用例。每个测试用例的第1行包含一个整数N (<=30),随后有N行,每行给出一场bg的信息:
    h l t
    其中 h 是快乐度,l是持续时间(小时),t是发起人离校时间。数据保证l不大于t,因为若发起人必须在t小时后离开,bg必须在主人离开前结束。

    当N为负数时输入结束。

输出:

    每个测试用例的输出占一行,输出最大快乐度。

样例输入:

3
6 3 3
3 2 2
4 1 3
4
5 1 1
10 2 3
6 1 2
3 1 1
-1

样例输出:

7
16

来源:

2008年浙江大学计算机及软件工程研究生机试真题

看到这道题,直观的感觉肯定是0-1背包动态规划。这里只要注意下物品放入时候的条件判断,以及最大值不一定在结束时间最大处取得即可。

我们也可以换一个思路:搜索。考虑到题目中N<=30,如果直接暴力搜索,复杂度很高,要考虑N!种可能的排列。但是,这N!种可能排列中有很大部分的排列是不可能实现的。这里我们可以换一个想法,怎么才能考虑最少的状态数呢?

来看一个例子:

N=3

bg1: 5 1 1

bg2: 10 2 3

bg3: 6 1 2

显然,bg3、bg2的序列是最欢乐的序列。从搜索的角度考虑,如果我们先走到bg1,判断要不要,然后再走到bg2,判断要不要,然后再走到bg3,再考虑要不要,会有一个很大的问题。如果我们取了bg2,按照尽可能早地安排bg的原则,bg1占用了第一个小时,bg2被安排在后两个小时,bg3是无法被安排的;而就算不安排bg1,我们先安排bg2,那么bg2一定是先占前两个小时,这样bg3还是没办法被安排。

嗯,是不是应该给所有的bg排个序?感觉上,我们策略漏解的主要原因就是,bg3搜过之后,是没有办法返回bg2去再搜的(如果能返回,那不就是简单的爆搜么?就是想缩复杂度到2^N的……)

感觉上应该先排那些急着走的人的bg,嗯,按结束时间排个序吧:

#include <iostream>
#include <algorithm>
using namespace std;

struct Bg{
	int h,l,t;
	bool operator<(const Bg& bg) const{
		return t<bg.t;
	}
};

Bg bgs[30];

int ans;

int n;
void DFS(int index,int t,int h){
	//cout<<"index: "<<index<<" t: "<<t<<" h: "<<h<<endl;
	if(index>=n)
		return;
	if(t + bgs[index].l <= bgs[index].t){
		ans = max(ans,h+bgs[index].h);
		DFS(index+1,t+bgs[index].l,h+bgs[index].h);
	}
	DFS(index+1,t,h);
}

int main(){
	while(cin>>n){
		if(n<0)
			break;
		ans = 0;
		for(int i = 0;i<n;i++)
			cin>>bgs[i].h>>bgs[i].l>>bgs[i].t;
		sort(bgs,bgs+n);
		DFS(0,0,0);
		cout<<ans<<endl;
	}
	return 0;
}

哈,竟然过了,为什么呢?我们肯定没有搜索完所有的可能的序列,那么,是不是那些不在搜索范围内的序列,能够经过调整,保证最后欢乐值不变,变成搜索范围内的序列呢?

如果有这么一个可行解:bg1,bg2,……,bgi,……,bgj,……

记bgi的开始时间为S,那么必须有: S+bgi.l+……+bgj.l<=bgj.t,        S+bgi.l<=bgi.t

这时候,若bgi.t>bgj.t,照着我们的策略,bgj应该排在bgi前面,这时候,这个可行解是没有被我么搜索到的。但是,如果我们把bgi放在bgj之后,我们发现,此时,S+……+bgj.l+bgi.j<=bgj.t<bgi.t 依然满足可行解的需求,于是,我们就可以把不在搜索范围内的解调整到我们搜索的范围内,从而保证算法的正确性。

此题最简单的方法是0-1背包,这里也附上源码:

#include <iostream>
#include <algorithm>
using namespace std;

struct Bg{
	int h,l,t;
	bool operator<(const Bg& bg)const{
		return this->t<bg.t;
	}
};

int dp[1000];
Bg bgs[30];

int main(){
	int N,maxT;
	while(cin>>N){
		if(N<0)
			break;
		for(int i = 0;i<N;i++){
			cin>>bgs[i].h>>bgs[i].l>>bgs[i].t;
		}
		sort(bgs,bgs+N);
		maxT = bgs[N-1].t;
		fill(dp,dp+maxT+1,0);
		for(int i = 0;i<N;i++)
			for(int j = bgs[i].t;j>=bgs[i].l;j--){
				dp[j] = max(dp[j],dp[j-bgs[i].l]+bgs[i].h);
			}
		cout<<*max_element(dp,dp+maxT+1)<<endl;
	}

	return 0;
}


还是建议每题多用几种方法做做,另外,做对了也思考下,为什么它是对的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G11176593

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值