题目1030:毕业bg
题目描述:
每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为“bg”。参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个bg定义一个“快乐度”。现给定一个bg列表,上面列出每个bg的快乐度、持续长度、bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最大的快乐度。
例如有4场bg:
第1场快乐度为5,持续1小时,发起人必须在1小时后离开;
第2场快乐度为10,持续2小时,发起人必须在3小时后离开;
第3场快乐度为6,持续1小时,发起人必须在2小时后离开;
第4场快乐度为3,持续1小时,发起人必须在1小时后离开。
则获得最大快乐度的安排应该是:先开始第3场,获得快乐度6,在第1小时结束,发起人也来得及离开;再开始第2场,获得快乐度10,在第3小时结束,发起人正好来得及离开。此时已经无法再安排其他的bg,因为发起人都已经离开了学校。因此获得的最大快乐度为16。
注意bg必须在发起人离开前结束,你不可以中途离开一场bg,也不可以中途加入一场bg。
又因为你的人缘太好,可能有多达30个团体bg你,所以你需要写个程序来解决这个时间安排的问题。
输入:
测试输入包含若干测试用例。每个测试用例的第1行包含一个整数N (<=30),随后有N行,每行给出一场bg的信息:
h l t
其中 h 是快乐度,l是持续时间(小时),t是发起人离校时间。数据保证l不大于t,因为若发起人必须在t小时后离开,bg必须在主人离开前结束。
当N为负数时输入结束。
输出:
每个测试用例的输出占一行,输出最大快乐度。
样例输入:
3 6 3 3 3 2 2 4 1 3 4 5 1 1 10 2 3 6 1 2 3 1 1 -1
样例输出:
7 16
来源:
看到这道题,直观的感觉肯定是0-1背包动态规划。这里只要注意下物品放入时候的条件判断,以及最大值不一定在结束时间最大处取得即可。
我们也可以换一个思路:搜索。考虑到题目中N<=30,如果直接暴力搜索,复杂度很高,要考虑N!种可能的排列。但是,这N!种可能排列中有很大部分的排列是不可能实现的。这里我们可以换一个想法,怎么才能考虑最少的状态数呢?
来看一个例子:
N=3
bg1: 5 1 1
bg2: 10 2 3
bg3: 6 1 2
显然,bg3、bg2的序列是最欢乐的序列。从搜索的角度考虑,如果我们先走到bg1,判断要不要,然后再走到bg2,判断要不要,然后再走到bg3,再考虑要不要,会有一个很大的问题。如果我们取了bg2,按照尽可能早地安排bg的原则,bg1占用了第一个小时,bg2被安排在后两个小时,bg3是无法被安排的;而就算不安排bg1,我们先安排bg2,那么bg2一定是先占前两个小时,这样bg3还是没办法被安排。
嗯,是不是应该给所有的bg排个序?感觉上,我们策略漏解的主要原因就是,bg3搜过之后,是没有办法返回bg2去再搜的(如果能返回,那不就是简单的爆搜么?就是想缩复杂度到2^N的……)
感觉上应该先排那些急着走的人的bg,嗯,按结束时间排个序吧:
#include <iostream> #include <algorithm> using namespace std; struct Bg{ int h,l,t; bool operator<(const Bg& bg) const{ return t<bg.t; } }; Bg bgs[30]; int ans; int n; void DFS(int index,int t,int h){ //cout<<"index: "<<index<<" t: "<<t<<" h: "<<h<<endl; if(index>=n) return; if(t + bgs[index].l <= bgs[index].t){ ans = max(ans,h+bgs[index].h); DFS(index+1,t+bgs[index].l,h+bgs[index].h); } DFS(index+1,t,h); } int main(){ while(cin>>n){ if(n<0) break; ans = 0; for(int i = 0;i<n;i++) cin>>bgs[i].h>>bgs[i].l>>bgs[i].t; sort(bgs,bgs+n); DFS(0,0,0); cout<<ans<<endl; } return 0; }
哈,竟然过了,为什么呢?我们肯定没有搜索完所有的可能的序列,那么,是不是那些不在搜索范围内的序列,能够经过调整,保证最后欢乐值不变,变成搜索范围内的序列呢?
如果有这么一个可行解:bg1,bg2,……,bgi,……,bgj,……
记bgi的开始时间为S,那么必须有: S+bgi.l+……+bgj.l<=bgj.t, S+bgi.l<=bgi.t
这时候,若bgi.t>bgj.t,照着我们的策略,bgj应该排在bgi前面,这时候,这个可行解是没有被我么搜索到的。但是,如果我们把bgi放在bgj之后,我们发现,此时,S+……+bgj.l+bgi.j<=bgj.t<bgi.t 依然满足可行解的需求,于是,我们就可以把不在搜索范围内的解调整到我们搜索的范围内,从而保证算法的正确性。
此题最简单的方法是0-1背包,这里也附上源码:
#include <iostream> #include <algorithm> using namespace std; struct Bg{ int h,l,t; bool operator<(const Bg& bg)const{ return this->t<bg.t; } }; int dp[1000]; Bg bgs[30]; int main(){ int N,maxT; while(cin>>N){ if(N<0) break; for(int i = 0;i<N;i++){ cin>>bgs[i].h>>bgs[i].l>>bgs[i].t; } sort(bgs,bgs+N); maxT = bgs[N-1].t; fill(dp,dp+maxT+1,0); for(int i = 0;i<N;i++) for(int j = bgs[i].t;j>=bgs[i].l;j--){ dp[j] = max(dp[j],dp[j-bgs[i].l]+bgs[i].h); } cout<<*max_element(dp,dp+maxT+1)<<endl; } return 0; }
还是建议每题多用几种方法做做,另外,做对了也思考下,为什么它是对的。