2020西工大计算机考研复试经验贴 复试是一场综合能力的考试,各个方面的能力都会被老师考察到,我们能做的有:准备好专业课知识,体现自己的扎实基础准备好自我介绍和简历项目,体现自己的强大实力调整心态,复试现场大胆表现自己现在把自己总结的复试相关资料分享给大家,希望大家在最后的关头继续冲,顺利通过西工大的复试!求一颗star,链接点我...
记录一次联邦学习FedAvg算法实现的debug过程 过程在tensorflow federated框架下的FedAvg实验中,一段代码总是捕捉到异常退出:for predicted_y in batch_predicted_y: max = -1000 flag = -1 for j in range(10): if predicted_y[j] > max: max = predicted_y[j] flag = j if(flag==-1): sys
《TensorFlow深度学习》(九)——卷积神经网络 先看看全连接层的样子:import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,Sequential,losses,optimizers,datasets# 创建4 层全连接网络model = keras.Sequential([layers.Dense(256, activation='relu'),layers.Dense(256, activation='relu'),
联邦学习中的non-iid总结 本文思考联邦学习最基本的问题:数据异构,即non-iid。主要思考什么是FL中的non-iid、如何衡量non-iid的程度、non-iid带来的问题、数学证明FedAvg在non-iid情况下收敛以及如何缓解non-iid带来的挑战。
《TensorFlow深度学习》(七)——Keras高层接口 Keras 是一个主要由Python 语言开发的开源神经网络计算库,最初由François Chollet编写,它被设计为高度模块化和易扩展的高层神经网络接口,使得用户可以不需要过多的专业知识就可以简洁、快速地完成模型的搭建与训练。本文学习tf.keras
TensorFlow深度学习(四)——张量进阶(未完) 在介绍完张量的基本操作后,我们来进一步学习张量的进阶操作,如张量的合并与分割、范数统计、张量填充、张量限幅等,并通过MNIST 数据集的测试实战,来加深对TensorFlow 张量操作的理解。
TensorFlow深度学习(三)——张量基础 本文学习TensorFlow的张量基础,包括数值张量、待优化张量、索引与切片、维度变换、broadcasting、数学运算,最后通过前向传播实战TensorFlow的操作