cuda error与性能提升笔记

本文详细记录了CUDA编程中遇到的常见错误,如非法内存访问、指针问题和调试时的同步问题。同时提供了针对性能提升的两种优化方法:数组解引用和循环展开。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录一下出现的错误,防止之后出现了还得一遍遍排查。

一、 CUDA error

1. Error 700 非法内存访问

排查后,发现kernel函数里if语句写错了,少了等号,应该是

if (n>=N) return;

2. 内存访问错误

* 可能是因为分配内存的时候错了

// 错误的情况,这样的分配只分配了num个8字节(地址的大小)
SAMPLEPOINT* pSample;
CHECK(cudaMallocManaged(&pSample, sizeof(pSample)*num));

// 修正
SAMPLEPOINT* pSample;
CHECK(cudaMallocManaged(&pSample, sizeof(SAMPLEPOINT)*num));

* 先分配内存,再引用指针

// 不可以!!
PHASESPACE* phsp = rtplan.phsp;
CHECK(cudaMalloc(&rtplan.phsp, sizeof(PHASESPACE)*N));

// 正确
CHECK(cudaMalloc(&rtplan.phsp, sizeof(PHASESPACE)*N));
PHASESPACE* phsp = rtplan.phsp;
3. 串行的时候没问题,并行的时候结果出错

串行的时候没问题(一般来说都是检查第一个结果),并行的时候结果出错。

原因:不同线程之间内存有交叠(内存分配错误或者数据溢出),或者浮点误差

* 可能是因为指针用错了,一定注意使用的是该线程下应该使用的指针。

* 可能是内存分配错误,注意sizeof(type)是不是对了。

* 串行和并行在计算时结果不一样,串行是0.0001,并行很可能就-inf了。万一是算一个索引,索引由于浮点误差,成负数、inf了,就会报错非法内存访问。

// Input: DATASET* dataset;
size_t tid = threadIdx.x + blockIdx.x * blockDim.x;
DATASET* dataset_ptr = dataset + tid;

// note!
float a = dataset_ptr->a;
// error
float a = dataset->a;
4. F5进行调试时,运行了一个核函数发现变量栏的内存访问都变红且'???'。看看是不是忘记同步了!
test_kernel<<<1,1>>>(a);
CHECKKERNEL;
CHECK(cudaDeviceSynchronize()); // 长时间不写就总忘记这忘记那的
5. 有关bool数组的结果出错

可能不是因为程序错了,是没有对bool数组进行初始化(全部置0或1)

6. 无法解析的外部函数

之前编译的好好的,忽然出现这个错误,可能是脑子抽了修改了函数的定义但没有修改对应的声明!比如把void func(const string& filename), 改成void func(string &filename),编写的时候vs根本不会报错,但编译不会通过。

二、性能提升

按照性能提升最大的顺序排列,不一定适合所有代码。

1. 数组解引

当N很大时真的可以快很多,可能是因为我的代码里有很多关于数组的计算。

for (int i = 0; i < N; i++) {
    A[i] = i;
}


// modified
for (int i = 0; i < N; i++) {
    *(A + i) = i;
}

2. 循环展开

for (int i = 0; i < 3; i++) {
    A[i] = i;
}

// modified
A[0] = 0;
A[1] = 1;
A[2] = 2;

to be continued..

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值