重带电粒子的能量歧离(energy straggling)

        带电粒子在物质中的能量损失可看作为continuous slowing-down approximation (CSDA)。但在真实情况下,考虑到能损过程的随机性涨落,单能粒子穿过某物质的射程是不确定的。


        重(M>>me)带电粒子电荷为ze,速度v,穿过某介质,与介质的原子核外电子发生碰撞,产生电离或激发,从而损失能量。考虑以入射粒子为轴,半径为b的圆柱

入射粒子转移给单个带电粒子的能量 (这里用了两个近似 1. 电子处于自由静止状态;2. 碰撞后入射粒子速度不变,仍按照原方向作直线运动)

\Delta E(b)=(\frac{1}{4\pi\epsilon_0 })^2 \frac{2z^2 e^4}{m_e v^2 b^2}

设介质电子密度n_e,原子密度 n_a

 n_a = \frac{Na}{N_A} = \frac{\rho V}{A}n_e = n_a\cdot Z = Z\frac{\rho N_A}{A}

db微元内碰撞的电子数 N_e(b),碰撞次数的统计涨落 (标准偏差) \sqrt{N_e(b)}

N_e(b) = 2\pi b\cdot db\cdot dx\cdot n_e=\overbrace{2\pi b\cdot db\cdot dx}^{volume}\cdot \overbrace{Z\frac{\rho N_A}{A}}^{n_e}


以下是Bethe-Bloch公式推导,顺便写一下,只关注能量歧离的可以跳过

因此在微元内转移的能量为

-dE(b) =\Delta E(b)\cdot N_e(b) = (\frac{1}{4\pi\epsilon_0 })^2 \frac{2z^2 e^4}{m_e v^2 b^2}\cdot 2\pi n_e bdbdx = (\frac{1}{4\pi\epsilon_0 })^2 \frac{4\pi n_e z^2 e^4}{m_e v^2}\frac{db}{b^2} dx

对b积分,从b_min到b_max

\int_b -\frac{dE(b)}{dx} = (\frac{1}{4\pi\epsilon_0 })^2 \frac{4\pi n_e z^2 e^4}{m_e v^2}\int_{b_{min}}^{b_{max}} \frac{db}{b^2} = (\frac{1}{4\pi\epsilon_0 })^2 \frac{4\pi n_e z^2 e^4}{m_e v^2} \ln{\frac{b_{max}}{b_{min}}}

i.e. -\frac{dE}{dx}= (\frac{1}{4\pi\epsilon_0 })^2 \frac{4\pi n_e z^2 e^4}{m_e v^2} \ln{\frac{b_{max}}{b_{min}}}

  • b_min: 入射粒子与电子正碰,损失能量最大,对应于最大损失动能T_max
  • b_max: 损失能量最小,对应于最小损失动能T_min;由于电子并非真正的自由电子,入射粒子要与电子发生相互作用,传递的能量至少为电子的最小激发能 I

联合以上可知

 \Delta E(b) \propto \frac{1}{b^2}

\frac{b_{max}}{b_{min}} = \sqrt{\frac{1/T_{min}}{1/T_{max}}} = \sqrt{\frac{T_{max}}{I}}

-\frac{dE}{dx}= (\frac{1}{4\pi\epsilon_0 })^2 \frac{4\pi n_e z^2 e^4}{m_e v^2} \frac{1}{2}\ln \frac{T_{max}}{I}

对公式表示形式做一些变换

r_e = \frac{1}{4\pi\epsilon_0} \frac{e^2}{m_e c^2}(\frac{1}{4\pi\epsilon_0})^2 \frac{e^4}{m_e c^2} = r_e^2 m_e c^2

-\frac{dE}{dx}= 4\pi n_e z^2 r_e^2 m_e c^2(\frac{1}{2}\ln \frac{T_{max}}{I}) = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} (\frac{1}{2}\ln \frac{T_{max}}{I})


Bohr能量歧离理论推导

在微元内转移的能量的统计涨落(方差)d\sigma_E^2

d\sigma_E^2 = (\sqrt{N_e(b)}\cdot\Delta E(b))^2 = N_e(b)\cdot \Delta E(b)^2 = 2\pi b\cdot db\cdot dx\cdot n_e \left ((\frac{1}{4\pi\epsilon_0 })^2 \frac{2z^2 e^4}{m_e v^2 b^2} \right )^2

对b积分,从b_min到b_max

\bg_white \fn_cm \sigma_E^2 = 2\pi\cdot dx\cdot n_e \left ((\frac{1}{4\pi\epsilon_0 })^2 \frac{2z^2 e^4}{m_e v^2} \right )^2 \int_{b_{min}}^{b_{max}} \frac{db}{b^3} = 2\pi\cdot dx\cdot n_e (\frac{1}{4\pi\epsilon_0 })^2 \frac{z^2 e^4}{m_e v^2} \left ((\frac{1}{4\pi\epsilon_0 })^2 \frac{2z^2 e^4}{m_e v^2 b^2} \right )|_{b_{max}}^{b_{min}}

\sigma_E^2 = 2\pi\cdot dx\cdot n_e (\frac{1}{4\pi\epsilon_0 })^2 \frac{z^2 e^4}{m_e v^2}\cdot \Delta E(b)|_{b_{max}}^{b_{min}} = 2\pi\cdot dx\cdot n_e (\frac{1}{4\pi\epsilon_0 })^2 \frac{z^2 e^4}{m_e v^2}\cdot(T_{max} - I)

对公式形式做一些变换和近似

  • 对于重入射粒子 m0>>me,在不考虑相对论的情况下 γme/m0<<1,可以认为 Tmax = 2mev^2)
  • Tmax >> I

\sigma_E^2 = 4\pi\cdot dx\cdot n_e (\frac{1}{4\pi\epsilon_0 })^2 z^2 e^4 = 4\pi z^2 Z e^4 n_a dx (\frac{1}{4\pi\epsilon_0 })^2

高斯单位制下

\sigma_E^2 = 4\pi z^2 Z e^4 n_a dx

与W.K. Chu 1975 文章中的一致(Z1,Z2分别是入射粒子和靶原子的原子序数,N介质的原子密度,ΔR穿过的介质厚度):

\Omega_B^2 = 4\pi Z_1^2 Z_2^2 e^4 N \Delta R


参考:

1. 中科大 《粒子探测技术》ppt

2. 忘记哪篇论文了

2023.4.23

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值