状态压缩DP_01 :最短Hamilton路径

哈密顿路径的定义是从起始点到结束点不重不漏地经过每个点恰好一次。

那么哈密顿路径的所有情况就是0123..n数列的全排列了。

如果要求出最短路径, 枚举全排列的话时间复杂度就达到了o(n*n!)级别

这道题的正解是状态压缩+DP

那么什么是状态压缩呢?为什么能用到求最短哈密顿路径呢?

先看个实例。

有5个点,0 1 2 3 4 求其最短哈密顿路径.

因为每个点只能经过一次, 所以对于已经走过的点, 无法影响到后面的点.

对于0 1 2 3 4 来说  假如已经走了  0 1 2  三个点  现在只能走2 -> 3  或者2 ->4  所以假如 0 1 2  = 10   0 2 1  = 20    那么我们一定会舍弃0 2 1 这种情况。如图:

也就是说求最短哈密达路径时  我们只需要保存已经走过的点的最短哈密顿路径!!!

以n=3为例,每个点都有两种可能,走或者不走,所以所有的路径情况一共有 2^3种:
0  (只走了0号点)

2
0 1  (走了0和1号点)
0 2   
1 2  
0 1 2 (走了0、1、2号点 包含0->1->2 , 0->2->1,保存时只保存其中的最小值。) 

(另:虽然是以0号点为起始点,为了方便起见还是写出了所有情况)
还有三个点全都不走的情况, 一共8种。本题中 n <= 20 所以 最多有2^20种情况需要保存。

假如 终点n == 4   那么 答案 = min(0XX3->4, 0XX2->4, 0XX1->4) .(假如1 2 3号点均可以到达4号点)

而对于   0XX3   0XX2  0XX1     0XX 只是一个状态 分别表示选择(012)、(013)、(023)时的最短哈密顿路径.

所以所谓的状态压缩就是把 一个状态集合  用 一个二进制数表示。 对于本题来说 0表示不经过, 1表示经过。

如经过了0 1 3 号点时的最短路径的状态就用 S = 01011来表示. ( 最高位表示第n号点, 最低位表示0号点)!!!!!这就是状态压缩!!!! 

  

所以对于第n号点来说, 只需要求出所有能从n-1个点到达第n个点的最短哈密顿路径,就能求出到达第n号点的最短哈密顿路径. 

同样对于一个点i来说, 从其他点到达点i时的最短哈密顿路径就是:

for(int j = 0; j < n; j++){
        dp[S][i] = min(dp[S][i], dp[S^(1<<i)][j] + weight[j][i]);//S^(1<<i)表示没有经过i点时的状态 
    }

例题:

给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数n。

接下来n行每行n整数,其中第ii行第jj个整数表示点ii到jj的距离(记为a[i,j])。

对于任意的x,y,zx,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

输出一个整数,表示最短Hamilton路径的长度。

数据范围

1≤n≤20  1≤n≤20
0≤a[i,j]≤10^7    

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18

C++:

#include <iostream>
#include <cstring>
using namespace std;
int dp[1<<20][20]; 
int weight[20][20];
int main(){        
    int n;   
    cin >> n; 
    for(int i = 0; i < n; i++)    
    for(int j = 0; j < n; j++)
        cin>>weight[i][j];
    memset(dp, 0x3f, sizeof dp);
    dp[1][0] = 0;
    for(int S = 1; S < 1<<n; S++){               
        for(int i = 0; i < n; i++){
            if(S & (1<<i)){ //遍历到了第i个点  此时第i个点的状态为 1 
                for(int j = 0; j < n; j++){  
                    if(S & (1<<j) )  // 第j个点的状态为1   从第j个点到第i个点  所以第j个点一定走过了 第 i 个点一定没有走过。
                        dp[S][i] = min(dp[S][i], dp[S^(1<<i)][j] + weight[j][i]);                       
                }
            }
        }                                              
    }   
    cout<<dp[(1<<n)-1][n-1];   // 注意 - 号优先级大于 <<   所以  (1<<n) - 1 注意括号。
    return 0;
}

 如果S为状态, 则当 S = 11111时 d[S][n-1]就是最终答案。 n-1是因为下标从0开始     

 (1<<5) - 1 = 100000 - 1 =  11111  详见 位运算

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值