欧几里得算法

首先感谢 C20210413 大佬, C20211711LJS 社花大佬,14大佬对于正确使用 m a r k d o w n markdown markdown 语法给予的帮助

人物介绍

欧几里得:(英文: E u c l i d Euclid Euclid;希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊人,数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。

算法本身

欧几里得算法,即辗转相除法,用于求 a , b a, b a,b 两数的最大公约数数------ gcd ⁡ ( a , b ) \gcd(a, b) gcd(a,b)

结论 gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) \gcd(a, b) = \gcd(b, a \bmod b) gcd(a,b)=gcd(b,amodb)

证明:我们设 r = a   m o d   b r = a \bmod b r=amodb,显然 r r r 也可以表示为 r = a − k × b r = a - k \times b r=ak×b,其中 k = a / b k = a / b k=a/b

假设 d d d a , b a, b a,b 的一个公约数,则有: a   m o d   d = 0 a \bmod d = 0 amodd=0 b   m o d   d = 0 b \bmod d = 0 bmodd=0

a = x × d , b = y × d a = x \times d, b = y \times d a=x×d,b=y×d,且 x , y x, y x,y 为整数。而 r = a − k × b r = a - k \times b r=ak×b

所以 r = x × d − y × d × k = ( x − k × y ) × d r = x \times d - y \times d \times k = (x - k \times y) \times d r=x×dy×d×k=(xk×y)×d,显然, x − k × y x - k \times y xk×y 为整数。

所以 r r r d d d 的倍数。所以 r   m o d   d = 0 r \bmod d = 0 rmodd=0,又因为 b   m o d   d = 0 b \bmod d = 0 bmodd=0,且 r = a   m o d   b r = a \bmod b r=amodb

所以有: d = gcd ⁡ ( b , a   m o d   b ) d = \gcd(b, a \bmod b) d=gcd(b,amodb)

根据以上原理,经过一步代换后,一定会出现 a > b a > b a>b。以后的每次代换一定会将 a , b a, b a,b 不断的缩小,而当 b = 0 b = 0 b=0 时,它们的最大公约数为 a a a


代码实现

int gcd(int a, int b) {
   
	if(b == 0) return a;
	return gcd(b, a % b);
}	

已被严格证明时间复杂度为: O ( log ⁡   m a x ( a , b ) ) O(\log\ max(a, b)) O(log max(a,b))

扩展欧几里得算法

简称扩欧。
可以在已知整数 a , b a, b a,b 的情况下求不定方程 a × x + b × y = gcd ⁡ ( a , b ) a \times x + b \times y = \gcd(a, b) a×x+b×y=gcd(a,b) 的一组整数解。

首先,我们来证明一个结论:对于整数 a , b a, b a,b,必定存在整数 x , y x, y x,y 满足 a × x + b × y = gcd ⁡ ( a , b ) a \times x + b \times y = \gcd(a, b) a×x+b×y=gcd(a,b)

证明:设 a × x 1 + b × y 1 = gcd ⁡ ( a , b ) a \times x1 + b \times y1 = \gcd(a, b) a×x1+b×y1=gcd(a,b),且 b × x 2 + ( a   m o d   b ) × y 2 = gcd ⁡ ( b , a   m o d   b ) b \times x2 + (a \bmod b) \times y2 = \gcd(b, a \bmod b) b×x2+(amodb)×y2=gcd(b,amodb)

由欧几里得算法知: gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) \gcd(a, b) = \gcd(b, a \bmod b) gcd(a,b)=gcd(b,amodb)

所以 a × x 1 + b × y 1 = b × x 2 + ( a   m o d   b ) × y 2 a \times x1 + b \times y1 = b \times x2 + (a \bmod b) \times y2 a×x1+b×y1=b×x2+</

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值