基于数字图像处理的人民币纸币面值识别
摘 要:利用粘连字符分割和句法识别的方法,对人民币纸币图像进行识别。经试验证明,该方法能正确识别纸币面值,同时对票面的污迹等噪声的抑制有很好的效果。
关键词:纸币面值识别;粘连字符分割;句法识别;Levenshtein 距离
随着科技的发展,很多行业都出现了基于人民币纸币识别技术的智能化无人收费系统, 节省了大量的人力资源。人民币纸币的识别技术不仅可以应用在自动售货售票上,也可以应用到银行的自动存取款机,手机营业厅的自动交费机等。
目前已有的识别方法主要是利用统计方法进行识别,如尺寸比较法、模板匹配、人工神 经网络等。人民币纸币在流通中不可避免的会沾染污迹或磨损。这些方法虽然能快速识别出纸币的面值,但纸币上的微小污迹或其他图像 噪声对识别结果影响很大,甚至出现无法识别 或错误识别的现象。
为此提出以提高识别准确率为目的的识别方法,使用粘连字符分割和句法识别的方法 来识别纸币的面值。
1 面向识别
要进行人民币纸币面值识别,首先要确定人民币纸币的面向。只有确定出面向,才能准确 定位纸币要识别的特征区域。面向可分为:正面 正向、正面倒向、反面正向和反面倒向。在进行 识别前应先进行预处理,如倾斜校正、滤波等处 理。
在面向识别中,采用目前常用的方法[4],即根据灰度来确定。这种方法识别速度快,准确率 高。对纸币图像分割成 9 块区域,进根据每一块的灰度进行比较,可以得出纸币的面向。
迹或磨损,如果面值数字上沾染上污迹,那么现 有的识别方法对污迹并没有太理想的解决办法。如模板匹配方法,阈值的设定将直接影响到 识别的结果。利用人工神经网络的方法[3]识别面 值,对有污迹的纸币识别效果也不是很理想而 且网络不容易收敛,运算量过大。而利用灰度投影方法[7],识别结果受噪声影响比较大。人民币纸币识别对准确率要求很高,识别算法应在保 证高识别率的基础上尽可能的提高识别速度。 提出的识别方法将粘连字符分割应用到纸币识 别中并采用句法方法进行识别,这种方法受纸 币的污迹影响很小,即使有一些微小磨损或污迹也能准确识别。
-
- 字符提取及分割
以 50 元面值的人民币为例,对数字 50 定
位后需要将两个字符分割开,而 5 和 0 连接的很紧密,粘连在一起,直接分割将损害字符的完 整。因此需要使用特殊的处理算法。先将数字字符滤波并进行边缘提取,经反复试验比较,can- ny 算子的效果较好,如图 3。得到 50 的空心字符,充填后进行细线化,得到图 4。
此时字符图像已经分离,可以轻易的将字符分割开。分割后也可以做一下简单的去毛刺 处理。如图 6 所示,是被分割出来的字符 5 和0。对字符的识别,这里采用句法识别的方法。
-
- 字符的识别
将字符图像分割成 4 个象限,如图 7,按几何的方法对象限排序,即右上角为第一象限,左上角为第二象限,左下角为第三象限,右下角为第四象限。之后判断每个象限的笔画。根据笔画的不同,列出代表笔画特征的表格,如图 8,可以得出
句法描述格式为:是否空心;第一象限笔画;第 2 象限笔画;第 3 象限笔画;第四象限笔画。
以 50 元人民币纸币为例,图 1 和图 2 分别为正面和反面灰度化后的图像,两图 A、B 两个特征区域位置排列和灰度有明显差别,据此可以判断出纸币的面向。
- 面值识别
目前已有的识别方法主要是识别面值数字,人民币纸币在流通中不可避免的会沾染污
此时字符依然是粘连的。在二值图像中, 白色像素点的值为 1,黑色像素点值为 0。对图像每一列找出最上端为 1 的点和最下端为 1 的点,行数相减,得到差值 K。
最上端为 1 的点为f(i1,j1),最下端为 1 的点为f(i2,j2),K=i2- i1。
然后从 f(i1,j1)开始向下,把到 f(i1+K- 1,j1)之间的点的值都改为 1,如图 5
数字 0 可以描述为:19876; 数字 1 可以描述为:03333; 数字 2 可以描述为 :05842;数字 5 可以描述为:02425;
对要识别的数字,将其描述出来的字符串进行匹配识别。对字符串进行匹配,就是对两个分别具有 m 和 n 个符号的字符串 X 和 Y,衡量他们之间的相似度,具体定义为:将字符串 X 变换成Y 需要的字母编辑次数。有三种编辑方法:代替、插入和删除。将描述要识别的数字的
字符串设为X,需要匹配的模板字符串为 Y。采用 Levenshtein 距离算法,以矩阵的形式给出将X 变成 Y 的所有可能编辑的操作,然后根据这个矩阵算出最终结果。在中设矩阵 D(i,j),任何一个从 D(0,0)到 D(5,5)的路径,都表示了一个将 X 转变成 Y 的编辑操作序列。从 D(0,0)开始,算法逐步填充整个矩阵,具体公式如下所示。最小的D1,D2 和D3 被赋值到 D(i,j)中。
D1=D(i,j- 1)+c(λ→a) 2.1
D2=D(i- 1,j) + c(λ→a) 2.2
D3=D(i- 1,j- 1)+ c(λ→a) 2.3
如 0 与 5 的字符串相匹配, 得到矩阵如下表,可以得出 Levenshtein 距离为 4。
表 1
将表述要被识别的字符的字符串 X 与其他模板字符串依次匹配,算出 Levenshtein 距离,距离最小的,就是符合匹配的字符。
- 试验结果
通过扫描仪扫描的不同面值纸币图像共200 张,包括第五版及新第五版人民币纸币的正面和反面图像,其中绝大多数是流通时间较长的纸币。在 MATLAB 7.0 中仿真,对纸币图像
进行识别。其中正确识别 199 张,错误识别 1 张。错误的原因是该纸币破损和污迹比较大,已 经影响到正常的流通。试验中对可以正常流通 的纸币,即使有一些小的污迹和破损,也能正确 的识别。
- 结论
提出的识别方法能很好的克服字符上有污迹影响识别率的问题,同时也很好的解决了字符粘连而无法分割的问题。如字符上沾有污迹, 在细线化处理的时候可以很好的弱化污迹带来的影响,在用句法方法进行识别的时候可以尽可能的排除污迹的影响,达到准确识别的目的。 提出的方法把统计识别和句法识别方法相结合,实验结果表明,在该方法下对不同面值的纸币进行识别,识别率可以达到 99%以上,因此该方法有很好的实用性。
参考文献
- 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007,3.
- [ 美]Rafael C Gonzalez, Richard E Woods, Steven L Eddins. 阮秋琦译. 数字图像处理(MATLAB 版)[M].北京: 电子工业出版社, 2005. [3]杜选,高明峰.人工神经网络在数字识别中的
应用[J].计算机系统与应用,2007, (2):21-27.
- 陈慧鹏,杨亮亮,李鸿.模糊集识别法在纸币清分中的应用研究[J].华中科技大学国家数控工程中心,2004.
- 宋铭利.关于去除图像噪音的中值滤波算法
[J].洛阳师范学院院报,2002(5):67-69.
- 韩贺磊.人民币纸币面额的机器视觉识别方法研究[D].大连理工大学,2007.
- 张国华.一种基于模板匹配的人民币纸币面额识别方法 [J].沈阳工业大学学报,2005.
(上接 6 页)
-
-
- 重点加强在材料领
-
3 结论
- 王建立,王怀德,黄健.铝土矿选尾矿制备复合
域的应用研究。包括基础研究和应用研究两个 方面,其中,基础研究应包括浮选尾矿机械化 学、热处理过程的物化性质变化规律,浮选尾矿 材料性能及化学改性的基础研究。
与此同时,开展选矿尾矿在材料领域的应用研究。我国对建材的需求量很大,作为建材的 生产原料还是很有发展前景的。铝土矿尾矿的 应用可提高水泥强度,也可以用铝土矿尾矿取 代水泥和石灰炉渣做道路材料,以降低道路材 料成本和提高尾矿利用率。
铝土矿尾矿中的铝硅酸盐矿物在一定温度下烧结后表面活性增加,有一定的空骨架结 构,同时,借助硅烷偶联剂、钛酸酯偶联剂和有 机硅等的预处理,选矿尾矿可作为橡胶、塑料的 活性填料。
-
-
- 开展分离提取有用矿物与除杂的研究。铝土矿尾矿中氧化铝的含量较高,为提高资源利用率,有必要开展提取氧化铝的研究工作。 此外,对尾矿中的 TiO2 、Fe2O3 等有价成分的回收。在利用尾矿开发新型材料时,TiO2、Fe2O3 等成分往往是有害的杂质,通过回收或脱除这些成分,对拓宽铝土矿尾矿的利用也具有重要意义。
- 加强尾矿用于环境治理的研究。选矿尾矿粒度细、比表面积大、粘度大,对特定金 属离子有选择性吸附作用,通过对尾矿的适度 处理后可作为有效的吸附剂使用,通过处理及 回收相关组分,可以拓宽铝土矿尾矿的利用范 围。
-
铝土矿选矿尾矿的综合利用是保证我国氧化铝工业可持续发展的重要课题。随着选矿 - 拜耳法生产氧化铝新工艺的推广应用,对铝土 矿选矿尾矿综合利用的研究工作开始受到高度 重视。综合分析铝硅酸盐矿物和铝土矿综合利 用的研究成果表明,铝土矿选矿尾矿的综合利 用研究应集中在三个主要方面:材料领域的基 础和应用研究;铝土矿选矿尾矿的分离提取有 价成分与杂质脱除的研究;尾矿用于环境治理 的研究。
参考文献
- 王洪涛,刘连文.高岭石胶体的降氟作用机理[J].南京大学学报(自然科学),2002,6:855.
- 古映莹,廖仁春,吴幼纯等.高岭石-MBT 复合材料的制备及其对Pb2+的吸附性能 [J]. 贵州化工,2001,3:23.
- 何宏平,郭九皋,朱建喜.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J].岩石矿物学杂志,2001,4:576-577.
- 王万军,张术根,孙振家.用伊利石高岭石质煤矸石试制橡胶填料[J].中南大学学报(自然科学版),2004,5:772.
- 宋宝祥.蛟河伊利石精制造纸涂料级颜料及应用研究[J].中国非金属矿工业导刊,2001,5:20- 21.
- 赵国魂.复杂铝硅酸盐矿物的提纯及应用[D].
长沙:中南大学,2004.
- 王建立,王怀德,黄健.选尾矿生产双快型砂水泥的研究[J].轻金属,2002,3:7.
吸水材料的研究[J].轻金属,2004,3:9.
- 张国斌.铝土矿选矿及尾矿综合利用[J].轻金属,1998,9:5-6.
- 兰叶; 王毓华; 胡业民; 铝土矿浮选尾矿基本特性与再利用研究[J].轻金属,2006,11:9.