基于数字图像处理的人民币纸币面值识别

基于数字图像处理的人民币纸币面值识别

摘 要利用粘连字符分割和句法识别的方法,对人民币纸币图像进行识别。经试验证明,该方法能正确识别纸币面值,同时对票面的污迹等噪声的抑制有很好的效果。

关键词纸币面值识别;粘连字符分割;句法识别;Levenshtein 距离

随着科技的发展,很多行业都出现了基于人民币纸币识别技术的智能化无人收费系统, 节省了大量的人力资源。人民币纸币的识别技术不仅可以应用在自动售货售票上,也可以应用到银行的自动存取款机,手机营业厅的自动交费机等。

目前已有的识别方法主要是利用统计方法进行识别,如尺寸比较法、模板匹配、人工神 经网络等。人民币纸币在流通中不可避免的会沾染污迹或磨损。这些方法虽然能快速识别出纸币的面值,但纸币上的微小污迹或其他图像 噪声对识别结果影响很大,甚至出现无法识别 或错误识别的现象。

为此提出以提高识别准确率为目的的识别方法,使用粘连字符分割和句法识别的方法 来识别纸币的面值。

1 面向识别

要进行人民币纸币面值识别,首先要确定人民币纸币的面向。只有确定出面向,才能准确 定位纸币要识别的特征区域。面向可分为:正面 正向、正面倒向、反面正向和反面倒向。在进行 识别前应先进行预处理,如倾斜校正、滤波等处 理。

在面向识别中,采用目前常用的方法[4],即根据灰度来确定。这种方法识别速度快,准确率 高。对纸币图像分割成 9 块区域,进根据每一块的灰度进行比较,可以得出纸币的面向。

迹或磨损,如果面值数字上沾染上污迹,那么现 有的识别方法对污迹并没有太理想的解决办法。如模板匹配方法,阈值的设定将直接影响到 识别的结果。利用人工神经网络的方法[3]识别面 值,对有污迹的纸币识别效果也不是很理想而 且网络不容易收敛,运算量过大。而利用灰度投影方法[7],识别结果受噪声影响比较大。人民币纸币识别对准确率要求很高,识别算法应在保 证高识别率的基础上尽可能的提高识别速度。 提出的识别方法将粘连字符分割应用到纸币识 别中并采用句法方法进行识别,这种方法受纸 币的污迹影响很小,即使有一些微小磨损或污迹也能准确识别。

    1. 字符提取及分割

50 元面值的人民币为例,对数字 50

位后需要将两个字符分割开,而 5 0 连接的很紧密,粘连在一起,直接分割将损害字符的完 整。因此需要使用特殊的处理算法。先将数字字滤波并进行边缘提取,经反复试验比较,can- ny 算子的效果较好,如图 3。得到 50 的空心字符,充填后进行细线化,得到图 4

此时字符图像已经分离,可以轻易的将字符分割开。分割后也可以做一下简单的去毛刺 处理。如图 6 所示,是被分割出来的字符 5 0。对字符的识别,这里采用句法识别的方法。

    1. 字符的识别

将字符图像分割成 4 个象限,如图 7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值