【题面】
4150:上机
总时间限制: 1000ms 内存限制: 65536kB
描述
又到周末了,同学们陆陆续续开开心心的来到机房上机。jbr也不例外,但是他到的有点晚,发现有些机位上已经有同学正在做题,有些机位还空着。细心的jbr发现,一位同学来到机房,坐在机位i上,如果他的左右两边都空着,他将获得能力值a[i];如果当他坐下时,左边或者右边已经有一个人在上机了,他将获得能力值b[i];如果当他坐下时,他的左边右边都有人在上机,他将获得能力值c[i]。
同时他发现,已经在上机的同学不会受到刚要坐下的同学的影响,即他们的能力值只会在坐下时产生,以后不会发生变化;第一个机位左边没有机位,最后一个机位右边没有机位,无论何时坐在这两个机位上将无法获得c值。
这时jbr发现有一排机器还空着,一共有N个机位,编号1到N。这时有N位同学们陆陆续续来到机房,一个一个按照顺序坐在这排机位上。聪明的jbr想知道怎么安排座位的顺序,可以使这N位同学获得能力值的和最大呢?
输入
第一行一个整数N(1<= N <= 10000)
第二行N个数,表示a[i]
第三行N个数,表示b[i]
第四行N个数,表示c[i]
(1<= a[i],b[i],c[i] <=10000)
输出
一个整数,表示获得最大的能力值和
样例输入
4
1 2 2 4
4 3 3 1
2 1 1 2
样例输出
14
提示
第一位同学坐在第四个机位上,获得能力值4;
第二位同学坐在第三个机位上,获得能力值3;
第三位同学坐在第二个机位上,获得能力值3;
第四位同学坐在第一个机位上,获得能力值4;
总和为14。
【思路】
最开始把这道题想难了,害得我想了一个多小时…
考虑每相邻的三个位置,这三个位置到来的先后顺序只有六种情况
中间位置先到:
... [2nd] [1st] [3rd] ... (0)
... [3rd] [1st] [2nd] ...
中间位置中间到:
... [1st] [2nd] [3rd] ... (1)
... [3rd] [2nd] [1st] ... (2)
中间位置后到:
... [1st] [3rd] [2nd] ... (3)
... [3rd] [2nd] [1st] ...
我们分别把这些情况标号为0 ~ 3(其中0和3表示两种情况)。
我们要判断某一个位置i对答案的贡献是a[i],b[i]还是c[i],只需要确定它与相邻的两个位置到来的先后顺序,而不需要判断不相邻的位置的关系。因此,0和3可以各表示两种情况。
然后我们定义:dp[i][x]
表示以第i位为中间点的连续三个座位,来人的先后次序情况为x时,前i个位置能力值的和最大是多少。
以 x = 0,为例:因为,在i-1,i,i+1这三个位置中,i是最早到的。所以,在i-2,i-1,i这三个位置中,i-1不可能是最早到的,要么是第二个到的,要么是第三个到的。这样就可以用dp[i-1][2]
和dp[i-1][3]
更新答案。
x = 1 ~ 3 同理。 这样我们就可以从dp[i-1]转移到dp[i]。不过要注意特判dp[1],dp[1][1]
和 dp[1][3]
是不存在的,应该被过滤掉。
【代码】
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 10000 + 10, inf = 0x7f7f7f7f / 2;
int n, a[maxn], b[maxn], c[maxn], dp[maxn][4];
//dp[i][0]: 在 i-1, i, i+1中, i是最早到的
//dp[i][1]: 在 i-1, i, i+1中, i-1是最早到的, i是第二个到的
//dp[i][2]: 在 i-1, i, i+1中, i+1是最早到的, i是第二个到的
//dp[i][3]: 在 i-1, i, i+1中, i是最晚到的
int main(){
scanf("%d", &n);
for(int i=1; i<=n; i++)scanf("%d", &a[i]);
for(int i=1; i<=n; i++)scanf("%d", &b[i]);
for(int i=1; i<=n; i++)scanf("%d", &c[i]);
dp[1][0] = a[1]; dp[1][2] = b[1];
dp[1][1] = -inf; dp[1][3] = -inf;
for(int i=2; i<=n; i++){
dp[i][0] = max(dp[i-1][2], dp[i-1][3]) + a[i];
dp[i][1] = max(dp[i-1][0], dp[i-1][1]) + b[i];
dp[i][2] = max(dp[i-1][2], dp[i-1][3]) + b[i];
dp[i][3] = max(dp[i-1][0], dp[i-1][1]) + c[i];
}
int ans = max(dp[n][0], dp[n][1]);
printf("%d\n", ans);
return 0;
}
2018.1.22 GGN