为何DeepSeek V3模型为自己是ChatGPT?

DeepSeek V3 AI模型:为何它认为自己是ChatGPT?

引言

在人工智能领域,最新的技术进展总是令人兴奋。最近,一家资金雄厚的中国AI实验室DeepSeek发布了一款新的AI模型——DeepSeek V3,它在多个流行基准测试中超越了许多竞争对手。这款模型不仅体积庞大,而且效率惊人,能够轻松处理编码和写作等基于文本的任务。但有趣的是,DeepSeek V3似乎认为自己是ChatGPT,OpenAI的AI驱动聊天机器人平台。本文将探讨这一现象背后的原因。

DeepSeek V3的自我认知

根据TechCrunch的报道和测试,DeepSeek V3在多次交互中将自己识别为ChatGPT(v4),而仅在少数几次中承认自己是DeepSeek V3。这种自我认知的偏差不仅体现在身份的误认上,甚至连在被问及DeepSeek的API时,它也会提供如何使用OpenAI API的指导。更令人惊讶的是,DeepSeek V3甚至能够复述GPT-4的一些笑话,精确到笑点。

统计系统与训练数据

像ChatGPT和DeepSeek V3这样的模型是基于统计系统的,它们通过训练数十亿个示例来学习其中的模式,从而做出预测。例如,它们会学习到在电子邮件中“to whom”通常出现在“it may concern”之前。

DeepSeek并未透露太多关于DeepSeek V3训练数据来源的信息。但是,存在大量的公共数据集包含由GPT-4通过ChatGPT生成的文本。如果DeepSeek V3是在这样的数据集上训练的,那么模型可能已经记住了GPT-4的一些输出,并现在正在逐字复述它们。

模型训练的争议

伦敦国王学院的AI研究员Mike Cook在接受TechCrunch采访时表示,模型在某个时刻看到了ChatGPT的原始响应,但目前尚不清楚具体是在哪里。他指出,直接在其他模型的输出上训练自己的模型可能会“非常糟糕”,因为这可能导致幻觉和误导性的答案,就像复印一张已经复印过的照片一样,我们失去了越来越多的信息和与现实的联系。

这种做法可能违反了那些系统的服务条款。OpenAI的条款禁止用户使用其产品的输出来开发与OpenAI自身竞争的模型。

AI领域的“抄袭”现象

DeepSeek V3并不是第一个误认自己的模型。谷歌的Gemini等其他模型有时也会声称自己是竞争对手的模型。这是因为互联网上充斥着AI产生的“垃圾”,内容农场使用AI创建点击诱饵,机器人充斥Reddit和X。据估计,到2026年,90%的网络内容可能是由AI生成的。

这种“污染”使得从训练数据集中彻底过滤AI输出变得非常困难。DeepSeek可能直接在ChatGPT生成的文本上训练了DeepSeek V3,谷歌也曾被指控做过同样的事情。

AI Now Institute的首席AI科学家Heidy Khlaaf表示,从“蒸馏”现有模型的知识中节省成本对开发者来说可能很有吸引力,尽管存在风险。

结论

DeepSeek V3的案例提醒我们,在AI领域,模型的自我识别和输出可能会受到其训练数据的影响。更重要的是,如果DeepSeek V3不加批判地吸收并迭代GPT-4的输出,可能会加剧模型的一些偏见和缺陷。这是一个值得所有AI开发者和研究人员关注的问题。

### 特定AI、DeepSeekChatGPT的功能差异 #### 技术背景与参数量 特定AI系统的参数量和技术背景会因具体的实现方式不同而有所变化。对于DeepSeek而言,部分报道指出其拥有370亿激活参数版本(即DeepSeek-v3),甚至存在以671b作为整体参考的情况[^2]。相比之下,基于GPT-3.5-turbo构建的ChatGPT模型参数规模约为7b。 #### 推理能力和应用场景 - **DeepSeek** - 主要由中国的深度求索公司开发,特别强调在垂直领域内的专业知识和服务能力,比如金融、法律以及编程等领域。 - 提供高效实用的服务体验,并且某些版本如DeepSeek-R1或DeepSeek-Coder已经实现了开源共享,便于企业和开发者进行二次开发和定制化部署。 - **ChatGPT** - 更加侧重于通用对话理解和生成任务,在自然语言处理方面表现出色,能够广泛应用于客户服务聊天机器人等多种场景之中。 - 虽然也具备一定的跨行业适应性,但在专门领域的深入程度可能不及像DeepSeek这样针对特定行业的优化方案。 #### 性能表现及成本考量 就训练成本来说,DeepSeek展示了明显的经济优势——v3版本仅需花费大约557.6万美元即可完成整个过程;这远少于OpenAI旗下产品线中的高端型号GPT-4所消耗的大约1亿美元预算。即使考虑到中间层次的产品GPT-3.5-turbo的具体开销尚未公开披露,也可以合理推断它仍然保持在一个相对较高的水平线上。因此,较低廉的研发投入使得DeepSeek成为那些希望降低初期投资风险并快速获取高质量解决方案的企业用户的理想之选。 ```python def compare_ai_models(model_a, model_b): """ Compare two AI models based on parameters and cost. Args: model_a (dict): Information about the first model including 'name', 'parameters' and 'cost'. model_b (dict): Information about the second model similar to `model_a`. Returns: str: A comparison summary of both models. """ result = f"{model_a['name']} has {model_a['parameters']} billion parameters with a training cost around ${model_a['cost']}. " result += f"While {model_b['name']} features approximately {model_b['parameters']} billion parameters at an estimated price tag over ${model_b['cost']}." return result print(compare_ai_models( {"name": "DeepSeek", "parameters": 370, "cost": "557.6 million"}, {"name": "ChatGPT(GPT-3.5-turbo)", "parameters": 7, "cost": "? but higher than DeepSeek"} )) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云樱梦海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值