DeepSeek VS ChatGPT,到底谁更厉害?

DeepSeek(深度求索)与ChatGPT作为生成式AI领域的代表产品,在技术架构、应用场景及行业落地等方面存在显著差异。以下从技术差异和行业案例两个维度展开分析:
请添加图片描述

一、核心差异对比

  1. 技术架构与研发理念

DeepSeek

  • 采用混合专家模型(MoE) 与动态路由机制,仅激活相关参数提升效率,支持稀疏激活技术降低计算资源需求。
  • 强调中文优化与专业领域知识融合,训练数据中中文占比达40%,并整合金融、医疗、法律等垂直领域知识库,提升专业问答的准确性。
  • 开源与低成本:模型完全开源,支持私有化部署,训练成本仅557万美元,API调用费用低至每百万tokens 2美元。

ChatGPT

  • 基于传统Transformer架构,全参数激活模式保证输出稳定性,但依赖云端算力,闭源系统限制定制化能力。
  • 多语言与通用性:支持96种语言,覆盖互联网公开文本、书籍等多源数据,擅长开放域对话和创意内容生成。
  • 高成本与生态依赖:训练成本数亿美元,API调用费用较高,依赖OpenAI生态,用户需遵循平台规则。
  1. 功能与性能表现
  • 中文处理能力:DeepSeek在中文理解、文言文翻译及方言处理上更精准,而ChatGPT在多语言支持上更全面但中文表达稍显生硬。
  • 推理与逻辑能力:DeepSeek通过“透明化推理”展示思维链,擅长复杂问题拆解(如数学证明、经营数据分析),而ChatGPT更侧重流畅的文本生成。
  • 实时交互速度:DeepSeek优化推理算法,响应速度更快(平均5.1分钟/项 vs. ChatGPT需人工介入),适合高频交互场景。
  • 多模态能力:ChatGPT率先支持图像交互(如GPT-4Vision),DeepSeek当前聚焦语言处理,多模态能力尚在探索。

二、行业应用案例

1. 金融与保险行业

智能客服与核保

  • DeepSeek通过私有化部署嵌入保险公司流程,例如阳光保险利用其处理车险报案,自动识别车牌号、出险地址,缩短客户等待时间60%。
  • 在核保环节,DeepSeek解析医疗报告、影像资料,实现秒级风险评估,提升效率40%。

风控与数据分析

  • 结合动态路由机制,DeepSeek为新华保险等机构提供经营数据异常分析,通过透明化推理辅助决策。
2. 零售电商

选品与库存管理

  • 商家通过DeepSeek分析用户行为数据,挖掘潜在需求(如充电宝双接口设计优化),并生成商品描述提升转化率。
  • 便利店选址场景中,DeepSeek提供客户群体分析(家长、儿童、教师)、商品安全建议及动态定价策略,销售额提升40%。

营销策略

  • 利用关联销售建议(如猫砂与除臭剂捆绑促销),低频高利润商品组合销售额增长显著。
3. 医疗与法律

专业问答与文档处理

  • DeepSeek整合医疗知识库,辅助医生快速生成诊断报告,并在法律条款解读中提供精准答案,错误率低于通用模型。

长文本处理

  • 支持256k tokens上下文窗口,处理医学论文或法律合同摘要效率高于ChatGPT(128k tokens)。
4. 教育与科研

教学辅助

  • 学生通过DeepSeek的思维链展示学习数学解题思路,生成同类练习题提升自学效率。
  • 科研领域,DeepSeek自动生成LaTeX格式文献综述,助力论文写作。

三、总结:适用场景与选择建议

选择DeepSeek的场景: 需中文深度优化(方言、文言文)、垂直领域专业应用(金融、医疗)、成本敏感或需私有化部署的企业。

选择ChatGPT的场景多语言支持(全球客服)、创意内容生成(营销文案、故事写作)、依赖成熟生态的大型机构。

未来趋势:DeepSeek的开源策略与低成本将加速AI普惠化,而ChatGPT在多模态与全球化布局上仍具优势。两者互补,共同推动行业智能化转型。

我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4

但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!

❗️为什么你必须了解大模型?

1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍

2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰

3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI

(附深度求索BOSS招聘信息)
在这里插入图片描述

⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
在这里插入图片描述

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值