ArcGIS Pro随机森林模型深度机器学习预测海草栖息地【教程】

开始之前,总体梳理一下项目流程,大致了解一下我们是怎么一步一步得到最终结果的

1、创建训练数据集

  1. 下载数据(链接:https://pan.baidu.com/s/1tM4ZXplEP2MC787OKSgt6A 提取码:achj
  2. 克隆python环境(关于克隆环境和安装包上一篇有详细步骤)
  3. 添加Python包:scikit-learnseaborn

              1)-程序包管理器中“添加程序包”

              2)-Condapip安装

4.打开工程文件

分析之前需要了解诸如海洋温度,盐度和营养物浓度之类的变量,以预测海草生长地点的适宜性。由于字段数据并不完美,并且通常缺少值,因此您需要填写值以完成原始数据,然后才能在分析中使用它们。

共有四个要素类:

  • EMU_Global_90m:生态海洋单位点数据,其中包含高达90米水深的海洋测量值。
  • Seagrass_USA:海草发生的面数据。Seagrass_USA中的每个多边形都是确定的海草栖息地。
  • US_coastline_shallow:美国海岸的多边形数据,其覆盖的测深范围一直到在Seagrass_USA中观察到海草栖息地的深度。
  • bathymetry_shallow:全局浅测深多边形,用于全局预测海草。

打开EMU_Global_90m属性表,变量包括盐度,海洋温度和硝酸盐含量等。但包含许多缺失值。这些属性将作为预测变量用于随机森林模型中。

4.1 使用【填充缺失值】工具,设置如下参数后运行。要填充的字段分别为:氧气、硝酸盐、磷酸盐、盐度、硅酸盐、srtm30和温度。

(注:警告消息是由于盐度、SRTM30和温度属性没有缺失值,但稍后需要用它们分析)

填充后的属性表如下

_STD字段显示用于估计缺失值的相邻数据点的标准偏差。

_ESTIMATED字段:若使用工具填充了属性,则为1,若数据已存在,则为0

现在,我们已获得所需海洋变量的空间完整数据。

此时,蓝圈表示添加了新数据值,空白圆圈表示仅包含原始数据。

 

4.2 图层符号化

       EMU_Global_90m_Filled图层在符号系统中选择“单一符号”,选择“Circle1”样式,大小设置为6pt

4.3 创建训练数据

接下来,将创建随机森林预测模型需要的训练数据,探究海草密度与海洋状况之间的关系。训练数据集将由7个预测变量(海洋测量值)和1个结果变量(位置是否合适的海草栖息地)组成。

为了便于稍后使用的Python脚本访问,这些预测变量必须位于单个要素类中。所以需要创建一个新的随机点要素类,将海洋测量数据添加到每个点。

4.3.1 将视图导航至“弗洛里达”书签的位置

4.3.2 打开【创建随机点】工具,设置如下参数后运行,生成10000个随机点

4.3.3 打开【经验贝叶斯克里金法】,输入EMU_Global_90m_Filled图层。对于Z值字段分别输出下列每一个属性的栅格结果:

Z 值字段

Output raster

TEMP(备注:TEMP_UNFILLED)

temp

DISSO2 (备注DISSO2_FILLED)

dissO2

NITRATE (备注NITRATE_FILLED)

nitrate

PHOSPHATE (备注: PHOSPHATE_FILLED)

phosphate

SILICATE (备注SILICATE_FILLED)

silicate

SRTM30 (备注SRTM30_UNFILLED)

srtm30

SALINITY (备注SALINITY_UNFILLED)

salinity

得到7幅栅格数据,类似下图

 

4.3.4 使用【提取多值到点】工具,设置如下参数运行,将上述7个属性的值提取到我们刚才生成的随机点中。

 

4.4 创建训练标签

为了让深度学习的模型了解什么样的海洋环境适合海草的生长,我们需要做一个简单的查询来区分在Seagrass_USA图层内(赋值1)或外(赋值0)的属性。

4.4.1 使用【添加字段】工具为USA_Train图层添加“Present”字段,设置为双精度类型

4.4.2 使用【计算字段】工具设置“Present”值为0

4.4.3 【按位置选择】“USA_Train”图层和“Seagrass_USA”图层【相交】的部分

4.4.4 再次使用【计算字段】工具,将选中要素赋值为1.

4.4.5 清空选择要素

流程

2执行随机森林

之前,我们创建了具有8变量的训练数据集,这些数据有助于确定海草栖息地的适用性。现在,用准备好的数据和机器学习库来创建预测模型。

首先,检查变量的相关性,以确保随机森林分类是最佳选择。

随机森林是一种需要训练的有监督的机器学习方法,或者使用已知预测模型的数据集。

将数据分为两部分,一部分训练随机森林分类器,另一部分测试结果。根据结果​​的准确性,可以将模型应用于所拥有的全局数据,并将其保存为要素类。

 

2.1 将空间数据加入Python

导入所需要的模型库

 

 

2.2 选择分类

 

2.3 分割数据

2.4 训练随机森林分类器

最后将生成的“GlobalPrediction”图层添加到显示界面

3、评估预测结果

3.1使用【Kernel Density】,在环境选项卡中设置mask为Bathymetry_shallow。工具设置参数如下运行。

 

3.2 对结果图层【SeagrassHabitats】进行符号渲染,分类类型选择“拉伸”,配色方案选择Heat Map1

将图层属性的坐标系统中勾选“Enable wrapping around the date line ”,渲染结果如图所示

 

3.3 插入图框-激活-调整位置

3.4 插入文本框-设置标题

3.5 插入图例、比例尺……

 

  • 31
    点赞
  • 148
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
ArcGIS Pro深度学习是指利用ArcGIS Pro软件平台结合深度学习技术进行空间数据分析和处理的方法。利用深度学习技术,ArcGIS Pro可以更精确地识别和分类地理空间数据中的目标,例如土地利用、植被覆盖、建筑物等,有效提高地理信息系统的数据处理和分析能力。 ArcGIS Pro深度学习的核心是深度学习模型的应用。通过训练深度学习模型,可以自动从大量的地理空间数据中提取特征,并进行精确的分类和识别。例如,利用卷积神经网络模型可以对遥感影像进行地物分类,识别道路、湖泊、森林等地物类型。同时,ArcGIS Pro还可以利用深度学习技术进行目标检测,例如识别建筑物、车辆、船只等目标,为城市规划、环境监测等提供更准确的数据支持。 除了图像识别和目标检测,ArcGIS Pro深度学习还可以应用于地理空间数据的预测和分析。比如利用循环神经网络模型对气候数据进行预测,对地质数据进行矿区勘探等。深度学习技术的应用使ArcGIS Pro在空间数据处理和分析方面具有更高的精度和效率,为地理信息系统的应用提供了更多可能性与发展空间。 总之,ArcGIS Pro深度学习是一种创新的地理信息处理方法,通过结合深度学习技术,可以更加高效、准确地处理和分析各类地理空间数据,为各个领域的应用提供更为精确和可靠的数据支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值