随机森林优于神经网络的三个理由——对比机器学习和深度学习

本文对比了随机森林与神经网络,强调随机森林在模型解释性和较低计算成本上的优势,以及神经网络在预测性能上的卓越表现。在需要理解变量贡献的场景下,推荐使用随机森林;而在追求高性能预测且资源充足时,神经网络是首选。

全文共1716字,预计学习时长5分钟

来源:ijava

 

有证据显示神经网络优于许多领域的机器学习算法。后者不断学习,直到得出满足预测值的最佳功能集。

 

然而神经网络将变量放大成一系列的数字,一旦它完成了学习阶段,对我们来说,特征就变得无法区分了。

如果只考虑预测,神经网络就是一直使用的事实上的算法。但是在行业环境中需要模型,它可以为利益相关者赋予特性或变量意义。这些利益相关者可以是任何人,不只是懂深度学习或机器学习知识的人。

 

 

随机森林和神经网络最大的区别是什么?

 

随机森林和神经网络是不同的技术,学习方式不同,但可以在类似的领域使用。随机森林是机器学习的技术,而神经网络则是深度学习的技术。

 

 

什么是神经网络?

 

神经网络是计算模型网络,它大体上模拟了人类大脑皮层功能,可以复制出和人类一样的思维和感知方式。神经网络是由相互连接的节点组成的层次结构,这些节点包含计算网络输出的激活函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值