Sklearn——数据集分割

Sklearn——数据集分割

通常,在训练有监督的机器学习模型的时候,会将数据划分为训练集**(Training set)、验证集(Validation set)和测试集(Test set)**,目的为了能够选出效果(可以理解为准确率)最好的、泛化能力最佳的模型。

sklearn.model_selection.train_test_split 随机划分训练集和测试集

train_test_split()函数是用来随机划分样本数据为训练集和测试集的,当然也可以人为的切片划分。

优点:随机客观的划分数据,减少人为因素

train_X,test_X,train_y,test_y = train_test_split(train_data,train_target,test_size=0.3,random_state=5)

参数解释:
train_data:待划分样本数据
train_target:待划分样本数据的结果(标签)
test_size:测试数据占样本数据的比例,若整数则样本数量
random_state:设置随机数种子,保证每次都是同一个随机数。若为0或不填,则每次得到数据都不一样

# 重点和难点:
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。
比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。

# 重点和难点:
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

# 注意事项:
经过观察,使用train_test_split进行分割后,并不保证每个子集中正负样本的比例与原数据集一致。

详情参考官网文档:
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春风惹人醉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值