从C语言到C++_29(红黑树封装set和map)红黑树迭代器的实现

本文介绍了如何在C++中实现红黑树并应用于set和map容器,包括红黑树节点的改造、仿函数用于键值比较、迭代器的前后++操作以及map的operator[]功能。通过这些改造,红黑树可以适应存储单个key或键值对,满足set和map的不同需求。
摘要由CSDN通过智能技术生成

目录

1. set和map中的红黑树

2. 仿函数比较键值对

3. 红黑树迭代器的实现

3.1 迭代器++

3.2 迭代器--

3.3 map的operator[ ]

4. 完整代码

Set.h

Map.h

RedBlackTree.h

Test.cpp

本篇完。


1. set和map中的红黑树

前一篇红黑树的源代码:

#pragma once

#include <iostream>
#include <assert.h>
#include <time.h>
using namespace std;

enum Colour // 枚举颜色
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	Colour _col; // 比AVL树少了平衡因子,多了颜色

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
	{}
};

template<class K, class V>
struct RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK; // 根给黑色
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) // 找到要插入的结点
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED; // 默认插入红色结点
		if (parent->_kv.first < kv.first) // 找到位置后插入结点
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED) // 父亲存在且为红才需要处理
		{
			Node* grandfather = parent->_parent;
			assert(grandfather); // 确定的可以断言下,否则就是插入前就不是红黑树
			assert(grandfather->_col == BLACK);
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;

				if (uncle && uncle->_col == RED) // 情况一,叔叔存在且为红(可以直接复制到下面uncle在左边)
				{    // 将父亲和叔叔改为黑,祖父改为红,然后把祖父当成cur,parent变祖父parent继续向上调整。
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 情况二或情况三:叔叔存在且为黑或叔叔不存在
				{
					if(cur == parent->_left) // 情况二的右旋+变色(parent在左)
					{
						//     g      
						//   p   u
						// c
						RotateR(grandfather);
						parent->_col = BLACK; // 父亲变为根了
						grandfather->_col = RED;
					}
					else // 情况二的左右双旋+变色(parent在左)
					{
						//      g      
                        //   p     u
                        //    c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK; // cur变为根了
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;

				if (uncle && uncle->_col == RED) // 情况一,叔叔存在且为红
				{    // 将父亲和叔叔改为黑,祖父改为红,然后把祖父当成cur,parent变祖父parent继续向上调整。
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 情况二或情况三:叔叔存在且为黑或叔叔不存在
				{
					if (cur == parent->_right) // 情况二的左旋+变色(parent在右)
					{
						//     g      
						//   u   p
						//        c
						RotateL(grandfather);
						parent->_col = BLACK; // 父亲变为根了
						grandfather->_col = RED;
					}
					else // 情况二的右左双旋+变色(parent在右)
					{
						//       g      
						//    u     p
						//         c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK; // cur变为根了
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		
		_root->_col = BLACK;
		return true;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col == RED) // 验证性质二
		{
			cout << "根节点不是黑色" << endl;
			return false;
		}

		int benchmark = 0; // 黑色节点数量基准值
		//Node* cur = _root; // 这种方法是先遍历一遍,然后传值,不过我们可以传引用
		//while (cur)
		//{
		//	if (cur->_col == BLACK)
		//	{
		//		++benchmark;
		//	}
		//	cur = cur->_left;
		//}
		return PrevCheck(_root, 0, benchmark); // 验证性质三和四
	}

protected:
	bool PrevCheck(Node* root, int blackNum, int& benchmark)
	{
		if (root == nullptr)
		{
			if (benchmark == 0)
			{
				benchmark = blackNum;
				return true;
			}

			if (blackNum != benchmark) // 验证性质三
			{
				cout << "某条黑色节点的数量不相等" << endl;
				return false;
			}
			else
			{
				return true;
			}
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		if (root->_col == RED && root->_parent->_col == RED) // 验证性质四
		{
			cout << "存在连续的红色节点" << endl;
			return false;
		}

		return PrevCheck(root->_left, blackNum, benchmark)
			&& PrevCheck(root->_right, blackNum, benchmark);
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right; // 动了三个标记了的结点,共更新六个指针,这更新两个指针
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL) // subRL不为空才更新
		{
			subRL->_parent = parent;
		}

		Node* ppNode = parent->_parent; // 记录parent的parent,防止parent是一颗子树的头结点

		subR->_left = parent; // 再更新两个指针
		parent->_parent = subR;

		if (_root == parent)  // 最后更新两个指针
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else // parent是一颗子树的头结点
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR; // 更新两个节点
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;

		subL->_right = parent; // 再更新两个节点
		parent->_parent = subL;

		if (_root == parent) // 最后更新两个结点
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}
	}

	Node* _root = nullptr;
};

在前一篇学习红黑树的时候,实现的是KV模型,节点中存放的是键值对pair。

而set中的节点只存放一个key值,map中的节点存放的是键值对。

但是map和set却使用的是同一颗红黑树。

这到底是怎么实现的呢?怎么做到一会儿是键值,一会又是键值对的呢?

看一下STL库中是如何实现的:

map和set中都既有key值,又有数据类型,map中的数据类型是键值对pair<const Key, T>,

而set中的数据类型也是key值。STL模板中,红黑树中的数据类型只有一个。

 无论是map还是set,底层封装的都是红黑树,

区别在于给红黑树实例化的是什么类型的模板参数。

map给红黑树传的模板参数是键值对pair<const Key, T>。

set给红黑树传的模板参数是键值Key。

对于红黑树而言,它是不知道接收到的第二个模板参数value是什么类型的,

它只能推演。所以set对应的红黑树中的数据类型就是一个key值,

而map对应的红黑树中的数据类型就是一个键值对。

接下来就是对我们实现的红黑树进行改造,(配合上一篇一起看)

首先就是对结点进行改造,将原本的KV键值对数据类型改成T,像STL中一样,只有一个,

让编译器自己去推演这个数据类型是key值还是键值对:

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;

	T _data; // 结点中的数据
	Colour _col; // 比AVL树少了平衡因子,多了颜色

	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
	{}
};

红黑树中也不再用键值对去构建新节点,而是使用那一个数据类型T。

先改一点是这样的:

Set.h:

#pragma once

#include "RedBlackTree.h"

namespace rtx
{
	template <class K>
	class set
	{
	protected:
		RBTree <K, K> _t;
	};
}

Map.h:

#pragma once

#include "RedBlackTree.h"

namespace rtx
{
	template <class K,class V>
	class map
	{
	protected:
		RBTree <K, pair<K, V>> _t;
	};
}

set中,向红黑树传的模板参数是<K,K>,第二个K传给节点,作为节点是数据类型。

map中,向红黑树传的模板参数是<K,pair<const K,T>>键值对,

第二个参数键值对pair<const K, T>传给节点,作为节点的数据类型。

现在有一个问题,给红黑树传模板参数时,第一个参数K类型的作用是什么?

对于insert来说,set和map中都可以不要第一个参数K,因为第二个参数中就有K,

可以用来比较。但是对于find接口来说,它需要的只是K。set中第二个参数也是K,

所以第一个K也可以省略。map中第二个参数是一个键值对,如果省略了第一K后,

红黑树中只有一个键值对类型,在使用find的时候,无法确定拿到first的数据类型,

此时就需要第一个模板参数K来确定find的类型了。

虽然set中可以不需要第一个模板参数K,但是map不可以,因它两使用的一个红黑树,

所以为了统一,第一个模板参数K不能省略


2. 仿函数比较键值对

改了数据那插入的所有比较都要改了,

站在红黑树的角度,并不知道它接收到的模板参数value是来自set中的键值还是map中的键值对。

在插入结点进行比较时:

set:cur->data 与 data进行比较,插入结点中的key值直接和树中的key值比较大小,决定插入左还是右即可。

map:cur->data.first 与 data.first进行比较,插入结点中的键值对的first和树种键值对的first比较,决定插入左还是右。

既然使用的是模板,是泛型编程,那么在比较处到底该写成map和set中的哪种比较方式呢?

要知道set中的data不是键值对,是没有first的,而map中的data直接比较又不符合我们的要求。

(pair也能比较键值对,不过它在first一样时比较了second,但我们不想比较second)

(关于set和map的细节可以回去看看
此专栏第26篇,后面实现方括号也要知道细节,链接:从C语言到C++_26(set+map+multiset+multimap)力扣692+349+牛客_单词识别-CSDN博客

此时我们也不能自己重新定义键值对的比较方式,因为库中已经有了,

我们无法再重载一个函数名,返回值,参数都相同的比较方式。

为了能够在红黑树中使用统一的比较方式,这里采用仿函数的方式:

在set和map中各定义一个仿函数,专门用来获取key值的,

并且将这个仿函数当作模板参数传给红黑树。

实现下仿函数和封装下insert,现在的部分代码就是这样:

  •  set中存放的数据本身就是key,所以获取key时有点多此一举,但是为了和红黑树的结构以及map的结构统一,也需要写一个。
  •  map中存放的数据是键值对,所以仿函数返回的是键值对中的first,依次来获取到key值。

在插入函数inset中,创建仿函数对象koft。

在需要进行键值key比较的位置,使用仿函数koft获取键值进行比较,然后决定插入左边函数右边。

使用仿函数的方法,压根就不用关心比较的是键值还是键值对,因为set和map都会给红黑树传它自己获取键值的仿函数,最终比较的都是键值

set和map中的插入直接复用红黑树中的插入即可。

但是set中插入的是一个键值,而map中插入的是一个键值对。

跑一下测试用例:

#include "RedBlackTree.h"
#include "Set.h"
#include "Map.h"

namespace rtx
{
	void TestSet()
	{
		set<int> s;
		s.insert(1);
		s.insert(5);
		s.insert(3);
		s.insert(5);
	}
	void TestMap()
	{
		map<int,int> m;
		m.insert(make_pair(6, 1));
		m.insert(make_pair(2, 1));
		m.insert(make_pair(3, 1));
		m.insert(make_pair(2, 1));
	}
}

int main()
{
	rtx::TestSet();
	rtx::TestMap();

	return 0;
}

 如果想遍历,那么就要实现迭代器了。


3. 红黑树迭代器的实现

这里实现的和库里的不太一样,库里的实现是带哨兵位头结点的,它指向根结点,

它的左指向中序遍历的第一个结点,右指向中序遍历的最后一个结点。

但不用哨兵位头结点也能实现,所以就不改了。

set和map的迭代器就是红黑树的迭代器:

这里可以参考list的迭代器,红黑树也是通过指针来链接的。

template<class T, class Ref, class Ptr>
struct __RBTreeInterator
{
public:
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}
};

最基本的迭代器如上面所示代码,迭代器中只有一个成员变量,那就是节点node。

下面就是逐渐完善迭代器支持的功能了,比如解引用,判断等于,加加,减减,等操作。

解引用+箭头+等于+不等于:(这里和链表是一样的,就不再详细讲解了)

template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
public:
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}
};

比较的内容是两个迭代器指向节点是否相同,而不是节点中的值。

无论是普通对象还是const对象,都可以调用const版本,并且仅仅是进行比较,

所以只有const版本的就够用了。


3.1 迭代器++

set和map迭代器的++按照中序遍历的顺序进行加加的。

时刻铭记中序遍历的顺序:左子树 根 右子树

现在设想 it 迭代器在树的任意一个位置,它++可以分为以下情况:

① 右子树存在:

当++it以后,it指向的应是右子树中的最左节点,如图所示。

解决步骤:

将当前it指向节点的有子节点开始,一直寻找最左节点。找到后,让it指向最左节点。


② 右子树不存在:

it处于下图所示位置,位于子树的最右边,当++it后,it会指向哪呢?

it的右子树为空,肯定不能像上面那样找右子树最左边的节点。

解决步骤:

it是parent的右子树,说明父节点parent已经被访问过了,所以还需要继续向上走。

garent又是grandfather的右子树,说明祖父节点grandfather也被访问过了,

所以还需要继续向上走。grandfather是它父节点的左子树,按照中序遍历的顺序,

grandfather的父节点还没有被访问,所以it应该指向这里,也就是grandfather->parent节点。

当it右子树不存在时,++it后,it指向的是it所在子树是左子树的最近祖宗节点


右子树不存在,如果it是中序最后一个节点呢?

当it指向的是红黑树最右边的节点时,再++it后,it应该指向最后一个节点的下一个节点。

但是红黑树最后一个节点的下一个节点并没有,所以我们让it指向nullptr。

我们按上面的步骤走,it也能指向空:

在代码中,无论是找到了++it后的位置,

还是it是最后一个节点,都会跳出循环,将it指向跳出循环的parent即可:

前置++:

	Self& operator++()
	{
		if (_node->_right) // 右子树存在,++后就到右子树的最左结点
		{
			Node* left = _node->_right;
			while (left->_left)
			{
				left = left->_left;
			}

			_node = left;
		}
		else // 右子树不存在,++后就到:所在子树是左子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的右的那个
			Node* cur = _node;
			while (parent && cur == parent->_right)
			{   // 是右子树就往上走,parent存在是处理_node是中序最后一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

后置++和前置++的唯一不同就是返回的是++之前的位置,

其他操作都一样,所以在改变it指向的位置之前,需要提前记录下要返回的it。

后置++返回类型不能用引用,因为记录位置的临时变量会销毁:

	Self operator++(int)
	{
		Self ret = Self(_node); // 记录当前位置 最后返回

		if (_node->_right) // 右子树存在,++后就到右子树的最左结点
		{
			Node* left = _node->_right;
			while (left->_left)
			{
				left = left->_left;
			}

			_node = left;
		}
		else // 右子树不存在,++后就到:所在子树是左子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的右的那个
			Node* cur = _node;
			while (parent && cur == parent->_right)
			{   // 是右子树就往上走,parent存在是处理_node是中序最后一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return ret;
	}

3.2 迭代器--

迭代器减减的逻辑和加加是相反的,所以它的顺序应该是:右子树 根 左子树

① 左子树存在:

 当左子树存在时,it减减后,应该指向的是左子树最右边的节点,如上图所示。


② 左子树不存在:

 it是左子树,说明它的根节点就已经被访问过来,所以需要继续向上。

当找到it所在子树是右子树的最近祖宗时,将it指向这个祖宗节点。

因为是–,逻辑相反,所以此时减减it后,it指向it所在子树是右子树的最近祖宗节点,

同样,当it指向是第一个节点时,减减it会指向空节点。

前置--:

	Self& operator--()
	{
		if (_node->_left) // 左子树存在,++后就到左子树的最右结点
		{
			Node* right = _node->_left;
			while (right->_right)
			{
				right = right->_right;
			}

			_node = right;
		}
		else // 左子树不存在,++后就到:所在子树是右子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的左的那个
			Node* cur = _node;
			while (parent && cur == parent->_left)
			{  // 是左子树就往上走,parent存在是处理_node是中序第一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

后置--:

	Self& operator--()
	{
		if (_node->_left) // 左子树存在,++后就到左子树的最右结点
		{
			Node* right = _node->_left;
			while (right->_right)
			{
				right = right->_right;
			}

			_node = right;
		}
		else // 左子树不存在,++后就到:所在子树是右子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的左的那个
			Node* cur = _node;
			while (parent && cur == parent->_left)
			{  // 是左子树就往上走,parent存在是处理_node是中序第一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

迭代器写好之后,还要在红黑树中封装它,因为我们都是通过红黑树来使用的。

begin返回的是中序遍历的第一个结点,end返回的是最后结点的下一个,所以直接给空:


3.3 map的operator[ ]

map有一个特有的[ ],可以实现查找,插入,修改三个功能,下面来实现一下。

(在讲解map的时候放过这段代码)

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}

需要对红黑树底层中的insert做修改:

1. 返回值改成pair<iterator, bool>   : pair<iterator, bool> Insert(const T& data)

2. 空树时返回根的迭代器和true的键值对:return make_pair(iterator(_root), true);

3. 存在新插入的数据,返回原本存在的数据的迭代器和false

4. 插入成功,返回新插入数据的迭代器和true

红黑树底层的inset已经被修改了,set和map中的insert也需要被修改,改返回值就行。


4. 完整代码

底层的迭代器做好了,下一步就需要把它封装到set和map中:

Set.h

#pragma once

#include "RedBlackTree.h"

namespace rtx
{
	template <class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;
		//必须得加关键字typename。
		//当模板类没有进行实例化时,它就是一张图纸,在编译的时候并不参与编译。
		//因为域作用限定符::的存在,编译器在处理这条语句的时候,可能会将::后的iterator当作静态变量处理,参与编译。
		//所以就需要加关键字typename来告诉编译器这是一个模板类型,暂时不参与编译。

		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}
	protected:
		RBTree <K, K, SetKeyOfT> _t;
	};
}

Map.h

#pragma once

#include "RedBlackTree.h"

namespace rtx
{
	template <class K,class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K,V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator; // 为什么+typename在set里

		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}

	protected:
		RBTree <K, pair<K, V>, MapKeyOfT> _t;
	};
}

RedBlackTree.h

#pragma once

#include <iostream>
#include <assert.h>
#include <time.h>
using namespace std;

enum Colour // 枚举颜色
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
public:
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;

	T _data; // 结点中的数据
	Colour _col; // 比AVL树少了平衡因子,多了颜色

	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
	{}
};

template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
public:
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}

	Self& operator++()
	{
		if (_node->_right) // 右子树存在,++后就到右子树的最左结点
		{
			Node* left = _node->_right;
			while (left->_left)
			{
				left = left->_left;
			}

			_node = left;
		}
		else // 右子树不存在,++后就到:所在子树是左子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的右的那个
			Node* cur = _node;
			while (parent && cur == parent->_right)
			{   // 是右子树就往上走,parent存在是处理_node是中序最后一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	Self operator++(int)
	{
		Self ret = Self(_node); // 记录当前位置 最后返回

		if (_node->_right) // 右子树存在,++后就到右子树的最左结点
		{
			Node* left = _node->_right;
			while (left->_left)
			{
				left = left->_left;
			}

			_node = left;
		}
		else // 右子树不存在,++后就到:所在子树是左子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的右的那个
			Node* cur = _node;
			while (parent && cur == parent->_right)
			{   // 是右子树就往上走,parent存在是处理_node是中序最后一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return ret;
	}

	Self& operator--()
	{
		if (_node->_left) // 左子树存在,++后就到左子树的最右结点
		{
			Node* right = _node->_left;
			while (right->_right)
			{
				right = right->_right;
			}

			_node = right;
		}
		else // 左子树不存在,++后就到:所在子树是右子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的左的那个
			Node* cur = _node;
			while (parent && cur == parent->_left)
			{  // 是左子树就往上走,parent存在是处理_node是中序第一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	Self operator--(int)
	{
		Self ret = Self(_node); // 记录当前位置 最后返回

		if (_node->_left) // 左子树存在,++后就到左子树的最右结点
		{
			Node* right = _node->_left;
			while (right->_right)
			{
				right = right->_right;
			}

			_node = right;
		}
		else // 左子树不存在,++后就到:所在子树是右子树的最近祖宗节点。
		{
			Node* parent = _node->_parent; // 找祖先里面孩子不是祖先的左的那个
			Node* cur = _node;
			while (parent && cur == parent->_left)
			{  // 是左子树就往上走,parent存在是处理_node是中序第一个结点的情况
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return ret;
	}
};

template<class K, class T, class KeyOfT> // KeyOfT仿函数,把key取出来
struct RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __RBTreeIterator<T, T&, T*> iterator;

	iterator begin()
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return iterator(left);
	}

	iterator end()
	{
		return iterator(nullptr);
	}

	pair<iterator, bool> Insert(const T& data) // 1. 返回值改成pair<iterator, bool>
	{
		KeyOfT kot; // 定义一个仿函数的对象

		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK; // 根给黑色
			return make_pair(iterator(_root), true); // 2. 空树时返回根的迭代器和true的键值对
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) // 找到要插入的结点
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(cur, false); // 3. 存在新插入的数据,返回原本存在的数据的迭代器和false
			}
		}

		cur = new Node(data);
		Node* newnode = cur; // 记录最后插入成功返回新插入结点的迭代器
		cur->_col = RED; // 默认插入红色结点
		if (kot(parent->_data) < kot(data)) // 找到位置后插入结点
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED) // 父亲存在且为红才需要处理
		{
			Node* grandfather = parent->_parent;
			assert(grandfather); // 确定的可以断言下,否则就是插入前就不是红黑树
			assert(grandfather->_col == BLACK);
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;

				if (uncle && uncle->_col == RED) // 情况一,叔叔存在且为红(可以直接复制到下面uncle在左边)
				{    // 将父亲和叔叔改为黑,祖父改为红,然后把祖父当成cur,parent变祖父parent继续向上调整。
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 情况二或情况三:叔叔存在且为黑或叔叔不存在
				{
					if (cur == parent->_left) // 情况二的右旋+变色(parent在左)
					{
						//     g      
						//   p   u
						// c
						RotateR(grandfather);
						parent->_col = BLACK; // 父亲变为根了
						grandfather->_col = RED;
					}
					else // 情况二的左右双旋+变色(parent在左)
					{
						//      g      
						//   p     u
						//    c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK; // cur变为根了
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;

				if (uncle && uncle->_col == RED) // 情况一,叔叔存在且为红
				{    // 将父亲和叔叔改为黑,祖父改为红,然后把祖父当成cur,parent变祖父parent继续向上调整。
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 情况二或情况三:叔叔存在且为黑或叔叔不存在
				{
					if (cur == parent->_right) // 情况二的左旋+变色(parent在右)
					{
						//     g      
						//   u   p
						//        c
						RotateL(grandfather);
						parent->_col = BLACK; // 父亲变为根了
						grandfather->_col = RED;
					}
					else // 情况二的右左双旋+变色(parent在右)
					{
						//       g      
						//    u     p
						//         c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK; // cur变为根了
						grandfather->_col = RED;
					}
					break;
				}
			}
		}

		_root->_col = BLACK;
		return make_pair(newnode, true); // 4. 插入成功,返回新插入数据的迭代器和true
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col == RED) // 验证性质二
		{
			cout << "根节点不是黑色" << endl;
			return false;
		}

		int benchmark = 0; // 黑色节点数量基准值
		//Node* cur = _root; // 这种方法是先遍历一遍,然后传值,不过我们可以传引用
		//while (cur)
		//{
		//	if (cur->_col == BLACK)
		//	{
		//		++benchmark;
		//	}
		//	cur = cur->_left;
		//}
		return PrevCheck(_root, 0, benchmark); // 验证性质三和四
	}

protected:
	bool PrevCheck(Node* root, int blackNum, int& benchmark)
	{
		if (root == nullptr)
		{
			if (benchmark == 0)
			{
				benchmark = blackNum;
				return true;
			}

			if (blackNum != benchmark) // 验证性质三
			{
				cout << "某条黑色节点的数量不相等" << endl;
				return false;
			}
			else
			{
				return true;
			}
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		if (root->_col == RED && root->_parent->_col == RED) // 验证性质四
		{
			cout << "存在连续的红色节点" << endl;
			return false;
		}

		return PrevCheck(root->_left, blackNum, benchmark)
			&& PrevCheck(root->_right, blackNum, benchmark);
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right; // 动了三个标记了的结点,共更新六个指针,这更新两个指针
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL) // subRL不为空才更新
		{
			subRL->_parent = parent;
		}

		Node* ppNode = parent->_parent; // 记录parent的parent,防止parent是一颗子树的头结点

		subR->_left = parent; // 再更新两个指针
		parent->_parent = subR;

		if (_root == parent)  // 最后更新两个指针
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else // parent是一颗子树的头结点
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR; // 更新两个节点
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;

		subL->_right = parent; // 再更新两个节点
		parent->_parent = subL;

		if (_root == parent) // 最后更新两个结点
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}
	}

	Node* _root = nullptr;
};

Test.cpp

#include "RedBlackTree.h"
#include "Set.h"
#include "Map.h"

namespace rtx
{
	void TestSet()
	{
		set<int> s;
		s.insert(3);
		s.insert(2);
		s.insert(1);
		s.insert(5);
		s.insert(3);
		s.insert(6);
		s.insert(4);
		s.insert(9);
		s.insert(7);

		set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	void TestMap()
	{
		string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };

		map<string, int> countMap;
		for (auto& str : arr)
		{
			// 1、str不在countMap中,插入pair(str, int()),然后在对返回次数++
			// 2、str在countMap中,返回value(次数)的引用,次数++;
			countMap[str]++;
		}

		map<string, int>::iterator it = countMap.begin();
		while (it != countMap.end())
		{
			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;

		for (const auto& kv : countMap) // 范围for也能用了(傻瓜替换)
		{
			cout << kv.first << ":" << kv.second << endl;
		}
	}
}

int main()
{
	rtx::TestSet();
	rtx::TestMap();

	return 0;
}


本篇完。

下一部分:(哈希)闭散列和开散列(哈希桶)的实现,再然后是unordered_set和unordered_map介绍+哈希桶封装。

穿越回来复习顺便贴个下篇链接:

从C语言到C++_30(哈希)闭散列和开散列(哈希桶)的实现-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GR鲸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值