- 博客(8)
- 收藏
- 关注
原创 位运算笔记
位运算笔记欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown
2021-08-23 15:10:40
162
原创 常微分方程的数值方法--单步法
我们的问题一般地,我们有如下形式的带有Dirichlet类型边界条件的常微分方程(组):x˙=f(t,x)\dot{x} = f(t,x)x˙=f(t,x)x(t0)=x0x(t_0) = x_0x(t0)=x0
2021-05-25 16:08:35
1834
原创 Simulink中的S-Function的建构和语法
S-Function的用处S-Function是用Matlab,C/C++或者Fortran实现的Simulink模块。S-Function和别的MEX文件一样是动态链接的子例程,由Matlab执行引擎自动加载和执行。S-Function可以由Simulink中的模块直接创建subsystem,也可以在Matlab中自定义算法进行实现。在Simulink的模块库中提供了四种语言的API接口:选择其中一个选项后(譬如C-file),Simulink库中会提供一系列的例程以供后续具体开发和调整。比如连续信
2021-05-20 10:53:20
1719
原创 C++模版类实例:四元数运算
四元数的背景知识四元数是复数的拓展,常用于表示三维空间的旋转变换。常用的其他变换有旋转矩阵,欧拉角以及旋转向量等,其中旋转矩阵用九个量表示三自由度的旋转从而具有冗余性,
2021-04-13 17:45:19
2221
2
原创 Tensorflow环境下的Keras基础操作指南
Keras搭建基本神经网络该小节内容可以参照第一篇博客:Tensorflow 的环境配置以及Hello World程序的运行Keras本身是一套搭建与训练神经网络的高层API协议,自身可以提供tensorflow的接口。而在tensorflow环境中,tf.keras则是其中一个与其他子模块一样的普通模块。透过keras协议我们可以高效搭建,训练,存储,调用神经网络,还可以...
2021-04-07 16:43:56
877
原创 信号与系统在仿真中的离散化
几种信号与系统里的典型环节传递函数一阶惯性环节的微分方程:Tx˙+x=yT\dot x+x = yTx˙+x=y二阶惯性环节的微分方程:T2x¨+2ζTx˙+x=yT^2\ddot x+ 2\zeta T\dot x +x = yT2x¨+2ζTx˙+x=y滞后环节的微分方程:x(t−τ)=yx(t-\tau) = yx(t−τ)=y一阶惯性环节的传递函数:G(s)=1Ts+1G(s) = \frac{1}{Ts+1}G(s)=Ts+11二阶惯性环节的传递函数:G(s)
2021-03-26 11:11:04
4868
原创 Tensorflow入门:机器学习简介和线性回归问题
分类和回归问题的定义:在监督学习中,预测的变量是连续的则称为回归,预测变量是离散的则称为分类。线性回归回归分析在统计中指通过大量数据来确定自变量和因变量关系,来建立一个相关性回归方程,用以预测今后因变量变化的分析方法。除开线性回归/linear regression,还有逻辑回归/logistic regression,多项式回归/polynomial regression等其他各种方法。线性回归因为与神经元的结构相似而在机器学习中被强调使用。图中的神经元输入x=[x0,x1,x2,⋯ ,xn]\
2021-03-19 17:27:23
186
原创 Tensorflow 的环境配置以及Hello World程序的运行
环境配置部分电脑配置为15版MacBook Pro带Iris Pro集成显卡。系统版本为macOS Big Sur。mac系统自带Python2.7,Tensorflow2.0需要配置Python3.0的环境运行。首先使用homebrew安装python3.x版本,需要注意的是Tensorflow目前不支持python的最高版本,下载的时候需要在官网上选择适合Tensorflow2.0的python3.x版本(目前是3.6-3.8)。如果已经安装了高版本的python3需要手动卸载重新安装降级,在命令
2021-03-16 16:29:08
367
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人