我们的问题
一般地,我们有如下形式的带有Dirichlet类型边界条件的常微分方程(组):
x ˙ = f ( t , x ) x ( t 0 ) = x 0 \dot{x} = f(t,x) \\x(t_0) = x_0 x˙=f(t,x)x(t0)=x0
通常地,我们把一个微分方程的边界条件分成如下三类:
1)Dirichlet条件:已知边界上的函数值;
x ( t 0 ) = x 0 x(t_0) = x_0 x(t0)=x0
2)Neumann条件:已知边界上的导数值;
x ˙ ( t 0 ) = x 0 \dot{x}(t_0) = x_0 x˙(t0)=x0
3)Rodin条件:前两者的线性组合。
Neumann边界条件在通常情况下,我们使用泰勒展开式做一个高阶的近似来处理,将它转换成一个类似Dirichlet边界条件的定值。对于一个给定边界条件的常微分方程,想要给出解析解或者数值解,第一步应该研究它的解的存在性和唯一性。并不是所有形如开头给出的常微分方程都有解,或者说,都有唯一解。关于带边界条件的常微分方程的解的唯一存在性,我们有解的唯一存在性定理来证明该函数存在而且唯一。
对于微分方程中的 f f f在 a ≤ t ≤ b , − ∞ < x < + ∞ a\leq t\leq b,-\infin<x<+\infin a≤t≤b,−∞<x<+∞内连续并且满足Lipschitz条件
∣ f ( t , x 1 ) − f ( t , x 2 ) ∣ ≤ L ∣ x 1 − x 2 ∣ |f(t,x_1) - f(t,x_2)|\leq L|x_1 - x_2| ∣f(t,x1)−f(t,x2)∣≤L∣x1−x2∣
则初值问题在区间 [ a , b ] [a,b] [a,b]上有唯一解。
原本给出的第一存在性定理和唯一性定理强调函数或者和其导数的连续性,并且在邻域所圈定的边界内。这里用一个比其更强的条件来证明唯一性和存在性,即Lipschitz条件。
Euler方法
基于泰勒展开式和数值方法的理论,我们对常微分方程的数值解提供了一些单步的解法。首先给出泰勒展开的公式:
x ( t + h ) = x ( t ) + h x ˙ ( t ) + h 2 2 ! x ¨ ( t ) + h 3 3 ! x ( 3 ) ( t ) + h 4 4 ! x ( 4 ) ( t ) + . . . x(t+h) = x(t)+h\dot{x}(t)+\frac{h^2}{2!}\ddot{x}(t)+\frac{h^3}{3!}x^{(3)}(t)+\frac{h^4}{4!}x^{(4)}(t)+... x(t+h)=x(t)+hx˙(t)+2!h2x¨(t)+3!h3x(3)(t)+4!h4x