几种信号与系统里的典型环节传递函数
给定一个跃阶信号输入,各个系统的响应如下各图:
一阶惯性环节的微分方程:
T x ˙ + x = y T\dot x+x = y Tx˙+x=y
二阶惯性环节的微分方程:
T 2 x ¨ + 2 ζ T x ˙ + x = y T^2\ddot x+ 2\zeta T\dot x +x = y T2x¨+2ζTx˙+x=y
滞后环节的微分方程:
x ( t − τ ) = y x(t-\tau) = y x(t−τ)=y
滞后环节的图线是滞后一定时间的跃阶函数,这里就不画了。
一阶惯性环节的传递函数:
G ( s ) = 1 T s + 1 G(s) = \frac{1}{Ts+1} G(s)=Ts+11
二阶惯性环节的传递函数:
G ( s ) = 1 T 2 s 2 + 2 ζ T s + 1 G(s) = \frac{1}{T^2s^2+2\zeta Ts + 1} G(s)=T2s2+2ζTs+11
滞后环节的传递函数:
G ( s ) = e x p ( − τ s ) G(s) = exp(-\tau s) G(s)=exp(−τs)
信号与系统中离散化的方法
Matlab中提供了五种离散连续信号的方法实现s域到z域的变换:
zoh零阶保持法;
foh一阶保持法;
tustin双线性变换法;
impulse脉冲响应法;
matched零极点匹配法。
根据z变换的理论,s域到z域最基本的映射关系是:
z = e x p ( T s ) z = exp(Ts) z=exp