Numpy 数组处理工具

目录

1.创建数组

(1)创建数组方法:array 

(2) 创建内容全为0或者全为1的数组

(3)创建有规律的数组

2.数组的切片及索引

(1)一维数组的切片

(2)简单索引

 (3)布尔索引

3.操作单个数组


1.创建数组

(1)创建数组方法:array 

(1)import numpy as np 
     a = np.array([1,2,3])  
     print (a)
(2)import numpy as np 
     a = np.array([[1,  2],  [3,  4]])  
     print (a)

输出结果如下:

(1)[1 2 3]
(2)[[1  2] 
      [3  4]]

(2) 创建内容全为0或者全为1的数组

(1)import numpy as np
     # 设置类型为整数,数组形状为2行3列
     y = np.zeros((2,3), dtype = int) 
     print(y)
(1)import numpy as np
     # 默认类型会将数据变为浮点类型,数组形状为2行3列
     y = np.ones((2,3)) 
     print(y)

输出结果如下:

(1)[[0 0 0]
      [0 0 0]]
 (2)[[1. 1. 1.]
     [1. 1. 1.]]

(3)创建有规律的数组

(1)import numpy as np
     x = np.arange(5)  
     print (x)
(2)import numpy as np
     #设置了起始值、终止值及步长
     x = np.arange(10,20,2)  
     print (x)

输出结果如下:

(1)[0  1  2  3  4]
(2)[10  12  14  16  18]

2.数组的切片及索引

(1)一维数组的切片

import numpy as np
a = np.arange(10)  
b = a[2:7:2]   # 从索引 2 开始到索引 7 停止,间隔为 2
print(a,b)

输出结果如下:

[0 1 2 3 4 5 6 7 8 9] [2 4 6]

(2)简单索引

import numpy as np 
#x为3行2列的数组,y中是获取了数组中 (0,0),(1,1) 和 (2,0) 位置处的元素
x = np.array([[1,  2],  [3,  4],  [5,  6]]) 
y = x[[0,1,2],  [0,1,0]]
print(x)  
print (y)

输出结果如下:

 (3)布尔索引

import numpy as np 
x = np.array([[  0,  1,  2],[  3,  4,  5],[  6,  7,  8],[  9,  10,  11]])  
#布尔索引
y = x[x >  5]
print (x)
print (y)

输出结果如下:

[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]

[ 6  7  8  9 10 11]

3.操作单个数组方法:reshape

import numpy as np
 
a = np.arange(8)
print (a)
 
b = a.reshape(4,2)
print (b)

输出结果如下:

[0 1 2 3 4 5 6 7]  #a

[[0 1]
 [2 3]
 [4 5]
 [6 7]]    #b

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值