知识点-线性代数


研究对象:向量、矩阵、行列式;
线性:一次形式来表达的;
代数:符号替代元素和运算;
https://www.jianshu.com/p/21aea5108d83
pdf:线性代数的几何意义

向量

向量的矩阵表示法,向量的模,单位向量,法向量
在自由向量的意义下,相等的向量都看作是同一个向量。数学中只研究自由向量。
已知两个非零向量a,b,作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π。
符号 大小 方向
数量积:.模长之积cos(夹角) 无
向量积: 模长之积sin(夹角) 右手定则 面积
右手定则:ab 的方向为:
右手大拇指指向a,食指指向b,中指与大拇指和食指所在平面相垂直
中指方向为向量积方向

  • 向量相加的几何意义
    在这里插入图片描述
  • 向量和常量乘法的几何意义
    在这里插入图片描述
  • 数量积
    两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。
    不共线时=|a||b|cos@,共线时=±|a||b|。
    向量的数量积与实数运算的主要不同点
    1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。
    2.向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。
    3.|a·b|与|a|·|b|不等价
    4.由 |a|=|b| ,不能推出a=b,也不能推出a=-b,但反过来则成立
    物理背景是做功W=fs
  • 向量积
    两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。
    若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。
    若a×b=0,则a、b平行。向量积即两个不共线非零向量所在平面的一组法向量。
    注:
    1.向量没有除法,“向量AB/向量CD”是没有意义的。
    2.向量向量积不满足交换律。
    在这里插入图片描述
  • 向量组和向量空间
    在空间上,一个向量可以被不同的向量组线性表示;

矩阵

  • 矩阵
    m个n元线性方程组=> m x n级矩阵=> A=(aij) m x n ;
    线性方程组的系数矩阵、增广矩阵 mx(n+1);
    矩阵的行、列、某位置的元素;
    矩阵元素的行编号、列编号;
    零矩阵O:元素全为零;
    n维行向量:m=1;m维列向量:n=1;
    矩阵A可用m个行向量,或n个列向量表示。
  • 方阵
    n阶方阵:n阶矩阵;
    方阵的主对角线;
    三角矩阵:上三角矩阵、下三角矩阵、对角矩阵;
    对角矩阵:数量矩阵、单位矩阵I;
  • 行阶梯形矩阵
    高斯消元法:使用三种初等,将n元线性方程组变换成阶梯形方程组;【注意消元】
    阶梯形方程组:满足两个条件的n元线性方程组;=> 行阶梯形矩阵;
    线性方程组的初等变换:换位置,乘非零值,相加;=> 矩阵的初等行变换;=>初等矩阵;
  • 行最简形矩阵
    线性方程组解:无解、唯一解、无穷多个解 => 行最简形矩阵;
    首项变元、自由变元;
  • n元齐次线性方程组
    n元齐次线性方程组:常数项全为零;只有零解;无穷多个解;
  • 基本运算
    矩阵的加法:同型矩阵;
    数与矩阵相乘:
    矩阵的乘法:A系数矩阵X未知量的矩阵=B结果的矩阵;mnxn=m;线性方程组;
    矩阵的转置:(T)
  • 运算规律
    加法交换律、加法结合律、乘法结合律、乘法对加法的分配律
    不满足乘法交换律
    不满足“消去”
  • 逆矩阵 (-1)
    一个n阶方阵A称为可逆,或称为非奇异的。如果存在一个n阶方阵B使得:AB = BA = I,并称B是A的一个逆矩阵。不可逆矩阵也称为奇异矩阵。
    一方阵可逆,则其逆矩阵唯一;
    方阵可逆,则其转置矩阵也可逆;
    A与B均为可逆矩阵,则AB也可逆;
    求逆矩阵的方法:将n阶矩阵A与n阶单位矩阵I写成一个nx2n级矩阵。然后对B实施初等变换,目的是将A化为单位矩阵。
    【求解矩阵方程:AX - B = X;】
  • 分块矩阵
  • 其他内容
    协方差矩阵

行列式

矩阵的行列式:方阵才有行列式,用det(A)表示;
行列式就是行列式中的行或列向量所构成的超平行多面体的有向面积或有向体积;
在二维平面中,矩阵行列式的绝对值代表一个平行四边形的面积;
在这里插入图片描述
在三维平面中,矩阵行列式的绝对值代表一个平行六面体的体积;
在这里插入图片描述

  • 行列式的性质
    单位矩阵的行列式为1;
    交换任意的两行,行列式变号;
    对任意一行来说,行列式是线性的;
    如果行列式有两行相等或者是倍数关系,行列式值为0;
    对角矩阵的行列式等于对角线上元素的乘积;
    方阵的行列式不为0; <=> 可逆矩阵, 非奇异矩阵;
    矩阵转置的行列式和原矩阵的相同;
  • 行列式的计算
    余子式和代数余子式:一个矩阵的任意一个元素aij都有对应的余子式,它就是将第i行和第j列划掉之后所有的矩阵行列式,用det(Aij)表示;而cij=det(Aij)(乘以-1的i+j次方)被称为代数余子式;
    矩阵A的伴随矩阵C:

特征值和特征向量

矩阵可以表示一种线性变换(Linear Transformation),它将一个向量在直角坐标系下的坐标表示转换为另一坐标系下的坐标表示;
最小二乘法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值