0 背景
1 用于截面设计的本构关系
当
0
⩽
ε
c
⩽
ε
c
2
0 \leqslant \varepsilon_c \leqslant \varepsilon_{c2}
0⩽εc⩽εc2时:
σ
c
=
f
c
d
[
1
−
(
1
−
ε
c
ε
c
2
)
n
]
\sigma_c = f_{cd}[1-(1-\frac{\varepsilon_c}{\varepsilon_{c2}})^n]
σc=fcd[1−(1−εc2εc)n]
当
ε
c
2
<
ε
c
⩽
ε
c
u
2
\varepsilon_{c2} < \varepsilon_c \leqslant \varepsilon_{cu2}
εc2<εc⩽εcu2时:
σ
c
=
f
c
d
\sigma_c = f_{cd}
σc=fcd
对于C60/75的混凝土,
由EC1992.1.1,表3.1,有
ε
c
2
=
0.0023
\varepsilon_{c2}=0.0023
εc2=0.0023,
ε
c
u
2
=
0.0029
\varepsilon_{cu2}=0.0029
εcu2=0.0029,
n
=
1.6
n=1.6
n=1.6
由EC1992.1.1,第2.4.2.4项,有
f
c
d
=
f
c
k
/
γ
c
=
60
/
1.5
=
40
M
p
a
f_{cd}=f_{ck}/\gamma_c=60/1.5=40Mpa
fcd=fck/γc=60/1.5=40Mpa
2 用于非线性结构分析的本构关系(3.1.5条)
设 ∣ ε c u 1 ∣ \left| \varepsilon_{cu1}\right| ∣εcu1∣为名义极限应变,那么:
当
0
<
∣
ε
c
∣
<
∣
ε
c
u
1
∣
0<\left| \varepsilon_{c}\right|<\left| \varepsilon_{cu1}\right|
0<∣εc∣<∣εcu1∣时,
σ
c
f
c
m
=
k
η
−
η
2
1
+
(
k
−
2
)
η
\frac{\sigma_c}{f_{cm}}=\frac{k\eta-\eta^2}{1+(k-2)\eta}
fcmσc=1+(k−2)ηkη−η2
其中,
η
=
ε
c
/
ε
c
1
\eta=\varepsilon_c/\varepsilon_{c1}
η=εc/εc1
k
=
1.05
E
c
m
×
∣
ε
c
1
∣
/
f
c
m
k=1.05E_{cm}\times \left| \varepsilon_{c1}\right| /f_{cm}
k=1.05Ecm×∣εc1∣/fcm
对于C60/75混凝土,由EC1992.1.1,表3.1,有
ε
c
1
=
0.0026
\varepsilon_{c1}=0.0026
εc1=0.0026,
ε
c
u
1
=
0.003
\varepsilon_{cu1}=0.003
εcu1=0.003,
f
c
m
=
68
M
p
a
f_{cm}=68Mpa
fcm=68Mpa,
E
c
m
=
39000
M
p
a
E_{cm}=39000Mpa
Ecm=39000Mpa