子序列的定义:对于一个序列a=a11,a22,......ann。则非空序列a'=ap1p1,ap2p2......apmpm为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= aii <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Sample Input
4
1
2
3
2
Sample Output
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= aii <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Sample Input
4
1
2
3
2
Sample Output
13
题意:求一个字符串的字序列数目
思路:一开始看到这道题我的大体思路是先求无论相同不相同所有的字串数,然后从头开始遍历遇到有相同的元素时在减掉,没有实现。看了题解发现用dp来做,从头开始遍历:
如果没有出现相同的元素,dp[i]=2*dp[i-1]+1;
如果出现相同的元素,dp[i]=2dp[i-1]-dp[x-1] x是此元素上一次出现的位置
这个规律在纸上写写就出来了
注意:遇到减号的时候取模时要加MOD再取模。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#define mod 1000000007
using namespace std;
typedef long long ll;
const int MAXN=1000005;
int a[MAXN],b[MAXN];
ll dp[MAXN];
int main(void)
{
int n;
int MAX;
while(scanf("%d",&n)!=EOF)
{
MAX=-1;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
MAX=max(MAX,a[i]);
}
for(int i=0;i<=MAX;i++)
b[i]=-1;
b[a[1]]=1;
dp[1]=1;
for(int i=2;i<=n;i++)
{
if(b[a[i]]==-1)
dp[i]=(2*dp[i-1]+1)%mod;
else
dp[i]=(2*dp[i-1]-dp[b[a[i]]-1]+mod)%mod;
b[a[i]]=i;
}
printf("%lld\n",dp[n]%mod);
}
return 0;