ResNet

1、ResNet详解

ResNet是一种残差网络结构。它通过残差块构建跨层的数据通道,是计算机视觉中最流行的体系架构。残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
残差结构分为两种,一种带虚线一种不带虚线,下图中左边实线的残差结构,其输入和输出的大小是一样,而右图的输入和输出不一样,因此引入了虚线部分。右图中,对于输入56,通过stride=2,将56变成28,然后设置卷积核的通道数为128,将输入的64转化成了128,同样捷径分支采用1x1,128,stride=2的设计,使得主分支和捷径分支上的输出保持一致,均为28x28,128。
在这里插入图片描述
在这里插入图片描述

2、Batch Normalization详解

在这里插入图片描述

3、迁移学习简介

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、参考链接

  1. Deep Residual Learning for Image Recognition
  2. Batch Normalization详解以及pytorch实验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值