Scrapy爬取数据案例

本文介绍如何使用Scrapy爬取Tencent的招聘信息,包括两种爬取方式:一是手动设定爬取页数,二是自动提取下一页链接。详细讲解了XPath选择器在提取数据和判断终止条件中的应用。
摘要由CSDN通过智能技术生成

Scrapy爬取数据


昨天练习了一个简单例子,今天进行进一步的学习——爬取同域下的多个网页。

Tencent 的招聘信息进行爬取:
腾讯招聘

Tencent招聘网站

可以看到需要的信息都在< tbody >下的class为even和odd< tr > 标签中。

< tr > 中的需求的数据为职位名职位链接职位人数职位类别工作地点发布日期

使用xpath可以很容易得到这些数据的获取方式:
数据集:xpath(“//tr[@class=’even’] | //tr[@class=’odd’]”)
职位名:xpath(“./td[1]/a/text()”)
职位链接:xpath(“./td[1]/a/@href”)
职位人数:xpath(“./td[3]/text()”)
职位类别:xpath(“./td[2]/text()”)
工作地点:xpath(“./td[4]/text()”)
发布日期:xpath(“./td[5]/text()”)

1.爬取方式一

  1. 新建工程Tencent

    scrapy startproject Tencent
    cd myproject

  2. 创建spider

    scrapy genspider Tenspider “tencent.com”

  3. 修改setting

        # Obey robots.txt rules
        ROBOTSTXT_OBEY = False
        ITEM_PIPELINES = {
        'Tencent.pipelines.TencentPipeline': 300,
        }
  4. 编写管道

    import jso
好的,下面是一个基于Scrapy数据可视化的考研数据爬取和展示案例: 1. 分析考研数据网站的页面结构和数据接口,确定需要爬取数据字段和请求方式。假设目标网站为“考研帮”(https://www.kaoyan.com/)。 2. 使用Scrapy框架创建一个新的Spider,定义起始URL和解析函数。在解析函数,使用XPath或CSS选择器提页面数据,并将其存储到Item对象。需要爬取数据可能包括考研院校、专业、科目、分数线等信息。 3. 在Spider配置Pipeline,将Item对象数据存储到本地文件或数据,并使用pandas库进行数据清洗和处理。可以将数据保存为CSV或Excel格式,以便在后续的数据可视化使用。 4. 在本地创建一个HTML文件,并使用Bootstrap和Chart.js等库进行数据可视化设计。在HTML嵌入JavaScript代码,使用Ajax技术从本地读数据,并将其转换为图表或地图等可视化效果。例如,可以使用柱状图展示各院校的分数线情况,使用地图展示各省份的考研人数和录情况等。 5. 运行Spider,使用命令行工具或IDE启动爬虫,等待爬取结果。 6. 在本地打开HTML文件,查看可视化效果,对数据进行交互式操作和分析。可以根据自己的需求和兴趣,设计不同类型的图表和可视化效果,以达到更好的展示效果和数据分析目的。 需要注意的是,考研数据涉及敏感信息,因此在进行爬取和处理时应该遵守相关法律法规和保护用户隐私的原则。另外,数据可视化需要有一定的前端编程和设计经验,如果您不熟悉相关技术,可以参考一些在线教程或模板,快速搭建可视化页面。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值