逻辑回归之一维线性回归

线性回归

  • 回归问题

    输入变量和输出都是连续的问题
    
  • 一维线性问题

    • 模型选择
      y = w x + b y = wx + b y=wx+b

    • 损失函数 (表示预测值和数据真实值的偏差)
      L ( y , y i ) = ∑ i = 1 n ( y − y i ) 2 L(y,y_i) = \sum_{i=1}^n (y - y_i)^2 L(y,yi)=i=1n(yyi)2
      在这里插入图片描述
      损失函数使用的是均值误差(定义为图中 预测值(黄线) 和 真实值(蓝点)的距离的平方)。还可以为,曼哈顿距离,马氏距离,总偏差平方和,回归平方和,残差平方和等

    • 求解

      求解斜率w和截距b。既可以得到一维线性方程。
      损失函数最小值则表示训练数据整体和真实数据的距离最小。此时的预测值越接近真实值。
      
      • 对b 偏导数
        ∂ f ∂ b = − 2 ( ∑ i = 1 n y i − n b − w ∑ i = 1 n x i ) \frac{\partial f}{\partial b} = -2(\sum_{i=1}^n y_i -nb - w\sum_{i=1}^n x_i) bf=2(i=1nyinbwi=1nxi)

      • 对w 偏导数

        ∂ f ∂ w = − 2 ( ∑ i = 1 n y i ∗ x i − ∑ i = 0 n x i − w ∑ i = 1 n x i ) \frac{\partial f}{\partial w} = -2(\sum_{i=1}^n y_i * x_i -\sum_{i=0}^n x_i - w\sum_{i=1}^n x_i) wf=2(i=1nyixii=0nxiwi=1nxi)

      • ∂ f ∂ w = 0 \frac{\partial f}{\partial w}=0 wf=0 以及 ∂ f ∂ b = 0 \frac{\partial f}{\partial b}=0 bf=0

        w = n Σ y i ∗ x i − Σ x i ∗ Σ y i n Σ x i 2 − ( Σ x i ) 2 w = \frac{n\varSigma y_i * x_i -\varSigma x_i*\varSigma y_i}{n\varSigma x_i^2 -(\varSigma x_i)^2} w=nΣxi2(Σxi)2nΣyixiΣxiΣyi

        b = Σ x i 2 ∗ Σ y i − Σ x i ∗ Σ y i x i n Σ x i 2 − ( Σ x i ) 2 b = \frac{\varSigma x_i^2 *\varSigma y_i -\varSigma x_i*\varSigma y_i x_i}{n\varSigma x_i^2 -(\varSigma x_i)^2} b=nΣxi2(Σxi)2Σxi2ΣyiΣxiΣyixi
        ==>
        w = X ‾ ∗ Y ‾ − ( X Y ) ‾ X ‾ 2 − X 2 ‾ w = \frac{\overline{X} * \overline{Y} - \overline{(XY)}}{\overline{X}^2 - \overline{X^2}} w=X2X2XY(XY)

        b = Y ‾ − w X ‾ b = \overline{Y} - w\overline{X} b=YwX

  • 编程验证1:手动实现

    import numpy as np
    import matplotlib.pyplot as plt
    #测试数据
    train_x = np.array([2, 6, 8, 8, 12, 16, 20, 20, 22, 26])
    train_y = np.array([58, 105, 88, 118, 117, 137, 157, 169, 149, 202])
    #测试数据
    test_x = np.array([3, 7, 17]).reshape(-1, 1)
    test_y = np.array([70, 100, 155]).reshape(-1, 1)
    
    class OneLineaRegression:
    	def __init__(self, train_x, train_y):
    		self.train_x = train_x
        	self.train_y = train_y
        	self.train = np.hstack(
            (train_x.reshape(-1, 1), train_y.reshape(-1, 1)))
       		self.w = 0
        	self.b = 0
    
    	def calcuate_loss(self):
    		#计算线性参数 w ,b
        	# x 均值
        	x_avg = np.mean(self.train_x)
        	# y 均值
        	y_avg = np.mean(self.train_y)
        	# x*y的均值
        	xy_avg = np.mean(self.train_x * self.train_y)
        	# 平方的均值
        	xx_avg = np.mean(self.train_x ** 2)
       	 	# 均值的平方
        	x_avg_x = x_avg * x_avg
    
        	self.w = (x_avg * y_avg - xy_avg) / (x_avg_x - xx_avg)
        	self.b = y_avg - self.w * x_avg
    
    	def predict(self, x):
        	return self.w * x + self.b
    
    	def show_line(self, pre_value):
       		line_x = np.arange(0, 30)
        	line_y = self.w * line_x + self.b
        	plt.scatter(self.train_x, self.train_y)
        	plt.plot(line_x, line_y,label='y = %.2fx + %.2f' % (self.w, self.b))
        	plt.xlabel('x')
        	plt.ylabel('y')
       		plt.ylim(0, 250)
       		# 预测值
       		test_pre_y = self.predict(test_x)
        	plt.scatter(test_x, test_pre_y,c='r',label='predict')
        	plt.scatter(test_x, test_y,c='orange',label='test')
        	plt.legend()
        	plt.legend()
        	plt.show()
        # 测试
       	model = OneLineaRegression(train_x, train_y)
       	# 训练数据
    	model.calcuate_loss()
    	# 显示一维显示方程参数
    	print("一维线性回归:",'斜率:',model.w,' 截距:',model.b)
    	# 一维线性回归: 斜率: 5  截距: 60
    	# 预测并显示
    	model.show_line()
    

    在这里插入图片描述

  • 编程实现2:sklearn 机器学习包

    from sklearn.linear_model import LinearRegression
    import matplotlib.pyplot as plt
    # 和方式1 一样的训练数据
    train_x = np.array([2, 6, 8, 8, 12, 16, 20, 20, 22, 26]).reshape((-1, 1))
    train_y = np.array([58, 105, 88, 118, 117, 137, 157,
                   169, 149, 202]).reshape((-1, 1))
     # sklearn 提供的线性回归函数
    model = LinearRegression()
    #训练数据
    model.fit(train_x, train_y)
    # 画图
    def show_line(w, b):
    	line_x = np.arange(0, 30)
    	line_y = w * line_x + b
    	pre_value = w * pre_x + b
     	plt.plot(line_x, line_y)
    	plt.scatter(train_x, train_y)
    	plt.xlabel('预测输入量',fontproperties="SimSun")
    	plt.ylabel('预测值',fontproperties="SimSun")
    	plt.ylim(0, 250)
    	plt.xlim(0, 30)
    	test_pre_y = model.predict(test_x)
    	plt.scatter(test_x, test_pre_y,c='r',label='predict2')
    	plt.scatter(test_x, test_y,c='orange',label='test2')
    	plt.show()
    
    
    print('线性回归函数参数:', '斜率:', model.coef_[0, 0], ',截距:', model.intercept_[0])
    #线性回归函数参数: 斜率: 5.0 ,截距: 60.0
    show_line(model.coef_[0, 0], model.intercept_[0] )
    

在这里插入图片描述

  • 一元多项式预测函数
    • 数据并非一元线性方程,数据走向适合二次项,三次项
    • 多项式模型选择 y = β 0 + β 1 ∗ x + β 2 ∗ x 2 + β 3 ∗ x 3 + β 4 ∗ x 4 + β 5 ∗ x 5 + b y=\beta_0 +\beta_1 * x+ \beta_2 * x^2+ \beta_3 * x^3+ \beta_4 * x^4+ \beta_5 * x^5 + b y=β0+β1x+β2x2+β3x3+β4x4+β5x5+b
    • 例如该数据如果用一元线性方程不能切合所有数据,而更适合二项式函数在这里插入图片描述
    • 一元多项式
      # 模拟一元多项式回归
      from sklearn.preprocessing import StandardScaler, MaxAbsScaler
      from sklearn.preprocessing import PolynomialFeatures
      from sklearn.linear_model import LinearRegression
      import numpy as np
      import matplotlib.pyplot as plt
      plt.rcParams['font.family'] = ['SimHei']
      
      # 生成模拟数据 y = 10.5 - 2.4 *x + 1.4 * x^2  + 30
      impurity_x = np.arange(0, 20, 0.5).reshape(-1, 1)
      impurity_y = 10.5 - 2.4 * impurity_x + 1.4 * impurity_x ** 2 + 30 + np.random.uniform(-30, 30, impurity_x.shape)
      train_x = impurity_x[:, :]
      train_y = impurity_y[:, :]
      # 一元线性回归
      def showLine1():
        	plt.subplot(121)
         	plt.scatter(train_x, train_y, label='训练数据')
          # 一元线性回归
          model = LinearRegression()
          model.fit(train_x, train_y)
          line_x = np.arange(0, 20, 1).reshape(-1, 1)
        	line_y = model.predict(line_x)
          plt.plot(line_x, line_y, label='预测函数:一元线性回归', c='r')
          plt.xlabel('预测输入量', fontproperties="SimSun")
          plt.ylabel('预测值', fontproperties="SimSun")
          plt.legend()
      #一元多项式回归 
      def showLine2():
      	plt.subplot(122)
          # 一元多项式回归
          # 生成二次项特征值
          quad_model = PolynomialFeatures(degree=2)
          train_x_quad = quad_model.fit_transform(train_x)
        	model2 = LinearRegression()
        	model2.fit(train_x_quad, train_y)
      
          test_x = np.arange(0, 20, 1).reshape(-1, 1)
          quad_test_x = quad_model.fit_transform(test_x)
          test_y = model2.predict(quad_test_x)
          plt.scatter(train_x, train_y, label='训练数据')
          plt.plot(test_x, test_y, label='预测函数:一元多项式回归', c='orange')
          plt.xlabel('预测输入量', fontproperties="SimSun")
       	plt.ylabel('预测值', fontproperties="SimSun")
          plt.legend()
      plt.figure(figsize=(10, 5))
      showLine1()
      showLine2()
      plt.show()
      
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值