Pandas - I/O read_csv() to_csv()等

1.read_csv()

设置读取文件列名

默认用第零行做列名。
header默认为第0行。可以选择为None,这样用0,1整数做列名。
设置为10,则前十行都舍弃,以第十一行为列名

# 以第10行为列名(从0计行数)
bao =  pd.read_csv('sym_yang.csv', header=10)

自行传入列名,用names=[[’’,’’,’’]]

pd.read_csv('sym_yang.csv', names=['aa','bb'])

2.to_csv()

excel打开出现乱码

因为默认编码是utf-8,excel打开会乱码,可以新建空白工作簿,从自文本导入。
也可在写csv时,设置encoding=‘gbk’。不过要注意,如果写的就是‘gbk’,那读时候也要显示指名读取的字符格式。
传入间隔符要为,。当然可以不传,默认就是,

df.to_csv('test.csv', encoding='gbk', sep=',')
设置文件索引列

如果保存的时候没有指名索引列,那么打开的时候默认无索引,自动生成0-n序列作为索引。

如果保存时,指名index=0。那么dataframe的索引不会被保存,再打开时就不会出现第一列是索引,同时又产生了默认索引的情况。
说白了,就是别把索引一块保存。

保存也可,那就在读的时候指明index_col=0
在读写excel时可以选择 index=False,来不使用索引。
(总结:保存有意义的内容,索引若是0-n数字,可删掉)

 pd.read_csv('sym_yang.csv',header=None, index_col=0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值