在计算机视觉中,提高图像分辨率通常涉及超分辨率(Super Resolution, SR)算法。这些算法旨在从低分辨率(Low-Resolution, LR)图像生成高分辨率(High-Resolution, HR)图像。以下是一些常见的超分辨率技术及其在MATLAB中的实现方法:
-
双线性插值: 这是一种基本的图像放大方法,通过在原始像素间插入新像素来增加分辨率。
% 假设 lowResImage 是低分辨率图像 highResImage = imresize(lowResImage, scaleFactor, 'bicubic'); % 'bicubic' 是插值方法
-
兰索斯插值: 类似于双线性插值,但在插值过程中使用不同的滤波器。
highResImage = imresize(lowResImage, scaleFactor, 'lanczos');
-
基于学习的方法: 近年来,基于深度学习的超分辨率方法取得了显著的进步。这些方法通常需要训练一个卷积神经网络(CNN)来学习低分辨率和高分辨率图像之间的映射关系。
-
SRCNN:一个早期的深度学习超分辨率模型。
-
ESPCN:使用转置卷积进行上采样的高效网络。
-
EDSR、SRGAN 等更先进的模型。
在MATLAB中,可以使用Deep Learning Toolbox中的函数来实现这些模型,或者直接使用预训练的模型。
-