以下是分层回归分析的R代码:
# 安装和加载所需的包
install.packages("car")
library(car)
df <- mydata
# 假设你有一个名为df的数据框,其中包含你想要分析的自变量和因变量
# 自变量例如:x1, x2, x3
# 因变量例如:y
# 分层回归分析步骤
# 步骤1: 仅包含基础模型(例如截距)
model1 <- lm(Y ~ 1, data = df)
summary(model1)
# 步骤2: 添加第一个自变量x1
model2 <- lm(Y ~ X1, data = df)
summary(model2)
# 步骤3: 在x1的基础上添加第二个自变量x2
model3 <- lm(Y ~ X1 + X2, data = df)
summary(model3)
# 步骤4: 在x1和x2的基础上添加第三个自变量x3
model4 <- lm(Y ~ X1 + X2 + X3, data = df)
summary(model4)
# 使用Anova函数来比较模型的差异(来自car包)
# 注意:这里使用的是Type II ANOVA,它考虑了模型中所有其他项的影响
anova(model2, model3, model4, test = "F")
# 查看模型的详细摘要信息
Anova(model4, type="III") # 使用Type III ANOVA,它考虑了模型中所有其他项的影响,不考虑它们进入模型的顺序
# 也可以查看模型的调整R方来判断模型拟合度
summary(model4)$adj.r.squared
# 绘制模型的诊断图来检查模型的假设是否满足
par(mfrow=c(2,2)) # 设置绘图区域为2x2
plot(model4)
plot(model3)
plot(model2)
案例数据:
结果解释:
在R语言中,对分层线性回归模型的结果进行详细解读通常涉及分析模型摘要中的多个关键部分。下面是一个逐步的解读过程,涵盖了模型摘要中常见的重要元素: