文心一言 使用指南

文心一言快速入门指南,只要3步

第一步:不要“学”,直接拿来用

刚开始一个月,尽量让自己每天玩10次文心一言。把自己工作、生活中遇到的问题,随手记录下来,扔给文心一言,看看它有什么建议。大约大半个月后,会逐渐发现文心一言的迷人之处。这个时候,再去看看别人的教程也不迟。

用的时候需要注意一点:把文心一言当做一个新招聘的私人助理,给他分配任务时,要清晰地交代任务的背景和期望的结果:

【我需要一份学习外语的计划。给我一份适合一个30岁,零基础的学习者的计划,目标是在6个月内能够自信地进行基本的日常对话。我希望每周都有明确的学习安排,包括听力、口语、阅读和写作,同时也需要一些建议,帮助我更好地掌握外语的发音和语法。】

这样的请求可以帮助你获取一份详细的学习计划,满足你的学习目标和需求。

图片

第二步:只管问,大胆问

如果你不确定文心一言能做什么,直接问问它吧!问问它可以为你做些什么事情?

图片

     一言百宝箱提供了各类场景和职业的提示词,可以直接使用。

图片

第三步:学习提问技巧

1.看别人写的提示词

它山之石可以攻玉。学习、模仿别人的提示词,是提高自己能力的最佳途径。

你可以参考文心一言自带的指令库---一言百宝箱

图片

2.看看其他同类 AI工具的提示词

之前我们分享的 AI聊天工具使用方法,也可以作为借鉴。还有chatgpt指令库,也可以是很好的参考。

拓展阅读

文心一言大模型

百度文心大模型是由百度公司推出的一种大规模中文语言模型。

该模型基于深度学习技术,使用了海量的中文文本数据进行训练,可以自动学习中文语言知识和语言规律,并在各种自然语言处理任务中表现出色,如自然语言理解、机器翻译、文本分类、命名实体识别等。

百度文心大模型的训练数据包括了来自百度搜索、百度贴吧、百度知道等各种文本类型,以及公开的中文文本语料库。

该模型采用了Transformer 结构,其中最大的模型参数超过了一亿个,预训练时使用了类似于 GPT 的训练方法,也可以通过微调等方式进行进一步的优化。

百度文心大模型在中文自然语言处理领域具有非常重要的作用,可以为各种中文语言应用和研究提供强有力的支持和帮助。

百度文心大模型源于产业、服务于产业,是产业级知识增强大模型。

百度通过大模型与国产深度学习框架融合发展,打造了自主创新的AI底座,大幅降低了AI开发和应用的门槛,满足真实场景中的应用需求,真正发挥大模型驱动AI规模化应用的产业价值。

文心大模型的一大特色是“知识增强”,即引入知识图谱,将数据与知识融合,提升了学习效率及可解释性。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值