目录
概述:
解决的问题:
1:网路不稳定整么办?
2:网络带宽不够怎么办?
3:内外网不通怎么办?
4:旧有设备怎么办?
5:原有设备五花八门怎么办?
解决服务器和物联设备 实际应用问题 ——边缘计算
1)边缘上云方案
2)边缘计算(LE)功能大图
3)边缘计算是什么
4)流程
边缘实例
边缘实例提供一种类似文件夹的管理功能,管理边缘端相关的网关、子设备。
设备接入
物联网边缘计算提供多语言设备接入SDK,让设备轻松接入边缘计算节点。
场景联动
自动化业务逻辑的可视化编程方式,通过可视化的方式定义设备之间联动规则,将规则部署至云端或者边缘端。
边缘应用
应用管理是Link IoT Edge提供的边缘应用管理能力,可以帮助您标准化的管理边缘端应用的版本、配置等。
流数据分析
流数据分析可先对数据进行清洗、加工、聚合之后再上云,大大减少数据传输成本。 边缘端与云端的连接不稳定,数据上云无法满足实时计算的要求,流数据分析在边缘端运行,因此不依赖网络,低时延处理数据。
消息路由
物联网边缘计算提供消息路由的能力。您可以设置消息路由路径,控制本地数据在边缘计算节点中的流转,从而实现数据的安全可控。
断网续传
边缘计算节点在断网或弱网情况下提供数据恢复能力。您可以在配置消息路由时设置服务质量(QoS),从而在断网情况下将设备数据保存在本地存储区,网络恢复后,再将缓存数据同步至云端。
5)核心要点
1:提供了旧有设备改造接入阿里云的能力,统一协议。
2:为网络不稳定设备提供了计算冗余,提高响应能力。
3:为跨网安全场景提供了桥梁,内外网互联。
4:为超宽带应用提供计算支援,解决宽带数据问题。
6)国网边缘场景需求
设备种类多,接入协议复杂
地理分布广,广泛应用无线技术
数据量大 ,毫秒级采集
可靠性要求高,时延要求低
书同文,车同轨
统一硬件形态,屏蔽硬件差异,减少各种非标接入,安全接入。
统一软件分发与交付标准,提 高软件研发效率。
7)电力设备接入实战
方案阐述:
1、保持原厂架构独立,但原厂架构上的应用需要新增“数据分发” 与“指令接收”模块,用于对接阿里物联网管理平台。
2、LE架构中的驱动 (1)用于接收“数据分发”传递过来的设备数据,然后通过物模型转换上送到云端。 (2)通过物模型接收云端指令,分发到原厂应用中,控制终端设备。
3、优点:适合原厂应用难以移植的场景。
4、缺点:驱动无电力设备协议沉淀。
方案阐述:
1、将原厂应用中电力设备接入、采集、控制模块移植到LE架构的驱动框架下。
2、优点:驱动的完整形态,沉淀电力协议。
3、缺点:前期移植工作量较大,需要根据原厂应用进行分析。
8)校园人脸识别门禁系统
公有云:
VPC/专有云:
私有本地化:
9)LinkVisual产品介绍
基本场景:视频数据跨平台、跨品牌、跨地域数据集中存储与使用;提供视频AI算法与云边协同算法能力,提高监控数据价值,减少运维与部署成本;
AI-BOX典型场景描述---社区
AI-BOX典型场景描述---商圈、旅游、楼宇等
AI-BOX典型场景描述---城管柔性执法
AI-BOX典型场景描述---道路管理
其他典型场景
10) AI-BOX产品POC套装
口述不如PPT,PPT不如视频,视频不如直接让客户现场看效果;产品提供演示套装,开箱即用,0基础15分钟搭建演示环境,直接看到算法效果。
11)AI-BOX+LinkVisual产品架构
窄:希望AI可以创造价值,但是上行难上云难;
贵:碎片场景已有存量终端设备,更换要花很多钱;
累:事后想升级,想调优只能人工跑现场;
12)AI-BOX算法能力
注: 原子算法能力,可以适配在AI-BOX中。配套算法能力,一并可以提供,每个算法的测试报告与说明书;
大类 | 算法名称 |
人 | 人脸识别(1:N) |
人证比对(人脸1:1) | |
人脸检测 | |
人脸跨摄像头轨迹追踪 | |
奔跑、徘徊、逗留 | |
人员聚集 | |
人员流量、热度 | |
以图搜图 | |
人员轨迹 | |
小孩防走失 | |
人员结构化(性别、外貌、年龄区间) | |
机 | 车识别(一级结构化) |
车脸识别 | |
车牌识别 | |
非 | 横幅检测 |
围栏、攀爬 | |
区域卫生、区域占用(消防通道等) | |
吸烟、明火 | |
安全帽、规范着装 |