前言
互联网行业曾经是无数人心中的“黄金时代”,它孕育了无数创新与奇迹,吸引着成千上万的年轻人投身其中。然而,随着时间的推移,这个行业的泡沫逐渐破裂,潮水慢慢退去,一些问题也随之浮出水面。特别是产品经理这一职位,在互联网热潮褪去之后,其真实的能力和价值开始受到审视。
随着互联网行业竞争日益激烈,以及全球经济环境的变化,不少互联网企业面临着增长放缓甚至下滑的局面。在这个过程中,一些产品经理的能力和价值开始受到质疑。一方面,部分产品经理过于依赖市场趋势和技术热点,忽视了对用户深层次需求的理解;另一方面,一些产品经理缺乏足够的技术和业务背景,使得他们在制定产品策略时难以做出准确判断。
产品经理的裸泳时刻
“裸泳”一词源自巴菲特的一句名言:“当潮水退去的时候,才知道谁在裸泳。”这句话用来形容产品经理的现状再合适不过了。在互联网高速增长的时期,许多产品经理似乎不需要太深入的技术知识或者业务理解就能取得成功。但是,当行业进入调整期,这些“裸泳”的产品经理们便显露出了不足之处:
- 缺乏核心竞争力:一些产品经理依赖于模板化的方法论,没有形成独特的解决问题的能力。
- 忽视用户体验:过分关注短期指标,牺牲了长期的用户体验。
- 技术理解不足:无法与开发团队有效沟通,导致产品实现效果打折。
- 市场敏感度不高:不能及时捕捉到市场的变化,错失最佳时机。
AI产品经理:新的机遇?
在这个背景下,许多互联网产品经理开始考虑转行成为“AI产品经理”。那么,这个转型是否靠谱呢?
- 技术背景:相较于互联网产品经理,AI产品经理需要具备一定的技术背景,了解AI算法、模型和框架。对于有一定编程基础的产品经理来说,这是一个挑战,但并非不可逾越。
- 市场需求:随着AI技术在各行业的广泛应用,AI产品经理的市场需求逐渐上升。具备AI背景的产品经理将在求职市场中更具竞争力。
- 薪资待遇:AI产品经理的薪资待遇普遍高于互联网产品经理。在AI领域,专业人才稀缺,薪资水平自然水涨船高。
如何成为AI产品经理?
- 学习AI相关知识:了解AI基本概念、算法、模型等,可以通过阅读书籍、参加线上课程、听专业讲座等方式进行学习。
- 实践经验:尝试参与AI项目,积累实际操作经验。可以加入AI创业公司,或者在公司内部寻求转型机会。
- 拓展人脉:结识AI领域的专业人士,了解行业动态,为自己的转型提供更多机会。
持续迭代:AI技术更新迅速,作为AI产品经理,要保持学习,不断提升自己的专业能力。
尽管市面上已经存在大量关于人工智能技术的资料,但专门针对如何成为和做好AI产品经理的系统化教学体系却寥寥无几。能够提供从产品理念到实施细节,乃至行业大牛全程指导的课程更是罕见。这不仅加大了产品经理学习的难度,也限制了他们在这个领域的成长速度。
因此特意给大家准备了一份涵盖了AI大模型入门学习思维导图、AI产品经理入门到进阶学习资料、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料。这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
适合哪些同学来学习?
- 有转行意向的0基础职场人:不满现状,想转行产品经理,不知道从哪里下手;
- 刚入行产品的产品新人:没人教没人带,缺乏方法论,想完善自己的产品知识体系;
- 想往产品方向发展的学生:想以产品经理作为职业生涯的开始,却不知道怎么学。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、大模型的学习路线
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
二、产品经理学习资料
三、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
四、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
五、AI大模型商业化落地方案
六、面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】