【大模型LLM第三篇】Prompt模版管理之jijia2以及Go Text Template

Prompt编排

如果将一个LLM应用做成服务,则需要对prompt进行管理。

一般来说我们写小demo,可能直接用string.format格式,但这种相对来说不是很规范且标准化。

对于Python我们可以使用 jijia2 模版来管理Prompt 对于Go我们可以使用Go text template进行管理

jijia2

文档:https://docs.jinkan.org/docs/jinja2/templates.html

基本上所有的需求都支持。

写了个小demo

prompts.toml

[SystemPrompt]
_type = "prompt"
task_1 = """
Are you Ok?

{% if mode %}
- a
{% else %}
- b
{% endif %}
"""
task_2 = """
hello!

{%- if mode %}
- c
{% else %}
- d
{% endif %}
"""

[UserInput]
_type = "prompt"
task_1 = """
{% if che %}
che message:
=====
{{ che }}
=====
{% endif %}
"""

task_2 = """
{% if che %}
che message:
=====
{{ che }}
=====
{% endif %}
"""

demo.py

import json
import os
import pandas as pd
import toml

from jinja2 import Environment, StrictUndefined


def load_prompt():
    folder = 'jijia2_demo'
    path = os.path.join(os.path.dirname(os.path.dirname(__file__)), folder, 'prompts.toml')

    with open(path, 'r') as file:
        content = toml.load(file)

    return content


class PromptGenerator:
    def __init__(self, prompt, task_type):
        self.prompt = prompt
        self.task_type = task_type

    def get_system_prompt(self):
        system_prompt = self.prompt['SystemPrompt'][self.task_type]
        return system_prompt

    def get_user_prompt(self):
        user_prompt = self.prompt['UserInput'][self.task_type]
        return user_prompt

    def generate(self, df: pd.DataFrame):
        for index in range(len(df)):
            variables = json.loads(df["context"][index])

            environment = Environment(undefined=StrictUndefined)
            user_prompt = self.get_user_prompt()
            base_prompt = self.get_system_prompt()

            system_prompt = environment.from_string(base_prompt).render(variables)
            user_prompt = environment.from_string(user_prompt).render(variables)

            final_prompt = [
                {
                    "role": "system",
                    "content": system_prompt
                },
                {
                    "role": "user",
                    "content": user_prompt
                }
            ]
            final_prompt_str = "".join(['system:\n', system_prompt, 'user:\n', user_prompt])
            print(final_prompt_str)
            
        return final_prompt


if __name__ == "__main__":
    pg = PromptGenerator(load_prompt(), task_type="task_1")
    data = pd.DataFrame({
        "context": [json.dumps({
            "mode": True,
            "che": "woniu"
        })]
    })
    pg.generate(data)

Go Text template

  • 文档:https://pkg.go.dev/text/template

  • Go的一些指导:https://zhuanlan.zhihu.com/p/557845796

直接看代码也很简单

package main

import (
 "bytes"
 "fmt"
 "text/template"
)

func main() {

 prompt_str := `
 {{ if .single_commit }}
 hahaha
 heelo {{.v}}
 {{- else }}
 {{.v}}
 {{- end }}
`

 tmpl, _ := template.New("base_prompt").Parse(prompt_str)

 buf := new(bytes.Buffer)

 data := make(map[string]interface{})
 data["single_commit"] = true
 data["v"] = "woniu"
 err := tmpl.Execute(buf, data)
 if err != nil {
  panic(err)
 }
 fmt.Println(buf)
}

结果:

其他

prompt编排看似简单,实则对于工程来说组成部分可能灵活拼接变换,对于一个产品不同场景的复用,包含:system、few shot、context、history以及user input等等不一样的模块,其中few shot和context中存在多种或者多个分支。

所以在这种情况下,用一种规则和标准的模版来存储和管理是更为保障的。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值