Prompt编排
如果将一个LLM应用做成服务,则需要对prompt进行管理。
一般来说我们写小demo,可能直接用string.format格式,但这种相对来说不是很规范且标准化。
对于Python我们可以使用 jijia2 模版来管理Prompt 对于Go我们可以使用Go text template进行管理
jijia2
文档:https://docs.jinkan.org/docs/jinja2/templates.html
基本上所有的需求都支持。
写了个小demo
prompts.toml
[SystemPrompt]
_type = "prompt"
task_1 = """
Are you Ok?
{% if mode %}
- a
{% else %}
- b
{% endif %}
"""
task_2 = """
hello!
{%- if mode %}
- c
{% else %}
- d
{% endif %}
"""
[UserInput]
_type = "prompt"
task_1 = """
{% if che %}
che message:
=====
{{ che }}
=====
{% endif %}
"""
task_2 = """
{% if che %}
che message:
=====
{{ che }}
=====
{% endif %}
"""
demo.py
import json
import os
import pandas as pd
import toml
from jinja2 import Environment, StrictUndefined
def load_prompt():
folder = 'jijia2_demo'
path = os.path.join(os.path.dirname(os.path.dirname(__file__)), folder, 'prompts.toml')
with open(path, 'r') as file:
content = toml.load(file)
return content
class PromptGenerator:
def __init__(self, prompt, task_type):
self.prompt = prompt
self.task_type = task_type
def get_system_prompt(self):
system_prompt = self.prompt['SystemPrompt'][self.task_type]
return system_prompt
def get_user_prompt(self):
user_prompt = self.prompt['UserInput'][self.task_type]
return user_prompt
def generate(self, df: pd.DataFrame):
for index in range(len(df)):
variables = json.loads(df["context"][index])
environment = Environment(undefined=StrictUndefined)
user_prompt = self.get_user_prompt()
base_prompt = self.get_system_prompt()
system_prompt = environment.from_string(base_prompt).render(variables)
user_prompt = environment.from_string(user_prompt).render(variables)
final_prompt = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": user_prompt
}
]
final_prompt_str = "".join(['system:\n', system_prompt, 'user:\n', user_prompt])
print(final_prompt_str)
return final_prompt
if __name__ == "__main__":
pg = PromptGenerator(load_prompt(), task_type="task_1")
data = pd.DataFrame({
"context": [json.dumps({
"mode": True,
"che": "woniu"
})]
})
pg.generate(data)
Go Text template
-
文档:https://pkg.go.dev/text/template
-
Go的一些指导:https://zhuanlan.zhihu.com/p/557845796
直接看代码也很简单
package main
import (
"bytes"
"fmt"
"text/template"
)
func main() {
prompt_str := `
{{ if .single_commit }}
hahaha
heelo {{.v}}
{{- else }}
{{.v}}
{{- end }}
`
tmpl, _ := template.New("base_prompt").Parse(prompt_str)
buf := new(bytes.Buffer)
data := make(map[string]interface{})
data["single_commit"] = true
data["v"] = "woniu"
err := tmpl.Execute(buf, data)
if err != nil {
panic(err)
}
fmt.Println(buf)
}
结果:
其他
prompt编排看似简单,实则对于工程来说组成部分可能灵活拼接变换,对于一个产品不同场景的复用,包含:system、few shot、context、history以及user input等等不一样的模块,其中few shot和context中存在多种或者多个分支。
所以在这种情况下,用一种规则和标准的模版来存储和管理是更为保障的。
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】