前言
我将在本文介绍如何通过 unsloth 框架以 LoRA 的方法微调 Qwen3-14B 模型。
到目前还有很多小伙伴还不明白什么时候应该微调?那么请看下图:
接下来我们再看一下本文使用的 LoRA 微调方法的优势:
LoRA(Low-Rank Adaptation of Large Language Models,大型语言模型的低秩自适应)是一种流行的轻量级训练技术,可以显著减少可训练参数的数量。它的工作原理是将少量的新权重插入模型中,并且只训练这些权重。这使得使用 LoRA 进行训练的速度更快、内存效率更高,并且生成的模型权重更小(只有几百 MB),更易于存储和共享。LoRA 还可以与 DreamBooth 等其他训练技术结合使用,以加速训练。
我们将在本文介绍如何微调使模型成为一个"双重人格"的助手,既能进行普通闲聊,又能在需要时切换到更严谨的思考模式来解决复杂问题,特别是数学问题。简而言之,微调后的模型获得的能力:
\1. 双模式操作能力:
- 普通对话模式: 适用于日常聊天场景。
- 思考模式( Thinking Mode ): 用于解决需要推理的问题。
\2. 数学推理能力: 能够解决数学问题并展示详细的推理过程,如示例中的"解方程(x + 2)^2 = 0"。
\3. 对话能力保持: 同时保持了自然对话的能力,能够进行流畅的多轮对话。
首先我们在谷歌 Colab 上选择算力,推荐使用 T4 GPU 或者 A100 GPU:
现在我们可以加载 14 B模型:
我们现在添加 LoRA 适配器,因此我们只需要更新 1% 到 10% 的参数!
准备数据
Qwen3 既有推理模式,也有非推理模式。因此,我们应该使用两个数据集:
- Open Math Reasoning 数据集,该数据集曾用于赢得 AIMO(AI Mathematical Olympiad,AI 数学奥林匹克 - 进步奖 2)挑战赛!我们从使用 DeepSeek R1 的可验证推理轨迹中抽取了 10%,其准确率超过 95%。
- 我们还利用了 Maxime Labonne 的 FineTome-100k 数据集(ShareGPT 格式)。但我们还需要将其转换为 HuggingFace 的常规多轮对话格式。
我们现在将推理数据集转换为对话格式:
接下来,我们将非推理数据集也转换为对话格式。
首先,我们必须使用 Unsloth 的 standardize_sharegpt 函数来修复数据集的格式。
非推理数据集要长得多。假设我们希望模型保留一些推理能力,但我们特别想要一个聊天模型。
让我们定义一个纯聊天数据的比例。目标是定义两种数据集的某种混合。让我们选择 25% 的推理数据和 75% 的聊天数据:
最后合并数据集:
训练模型
现在让我们使用 Huggingface TRL 的 SFTTrainer!我们执行 60 步来加快速度,但你可以设置 num_train_epochs=1 进行完整运行,并关闭 max_steps=None。
让我们开始训练模型吧!要恢复训练,请设置 trainer.train(resume_from_checkpoint = True)
推理
让我们通过 Unsloth 原生推理来运行模型!根据 Qwen-3 团队的说法,
- 推理的推荐设置是:temperature = 0.6、top_p = 0.95、top_k = 20。
- 对于基于普通聊天的推理,temperature = 0.7、top_p = 0.8、top_k = 20。
保存、加载微调模型
要将最终模型保存为 LoRA 适配器,请使用 Huggingface 的 push_to_hub 进行在线保存,或使用 save_pretrained 进行本地保存。
[注意] 这仅保存 LoRA 适配器,而不是完整模型。后面我来介绍如何保存为 16 位或 GGUF 格式。
现在,如果你想加载我们刚刚保存用于推理的 LoRA 适配器,请将 False 设置为 True:
保存为 VLLM 的 float16
选择 merged_16bit 保存 float16,或选择 merged_4bit 保存 int4。使用 push_to_hub_merged 上传到你个人的 Hugging Face 账户!
GGUF / llama.cpp 转换
使用 save_pretrained_gguf 进行本地保存,使用 push_to_hub_gguf 上传到 HF。
- q8_0 - 快速转换。资源占用较高,但通常可以接受。
- q4_k_m - 推荐。使用 Q6_K 处理 attention.wv 和 feed_forward.w2 张量的一半,否则使用 Q4_K。
- q5_k_m - 推荐。使用 Q6_K 处理 attention.wv 和 feed_forward.w2 张量的一半,否则使用 Q5_K。
本地部署
接下来就是将 GGUF 文件下载到本地,以便本地部署运行。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
