吴恩达机器学习学习笔记 --- 神经网络

(1)逻辑单元

(2)神经网络模型展示

【主要加入偏置量】

【注意下标】

(3)前向传播

【从前往后计算 a 值】

(4)举例

【AND】

 【OR】

 【NOT】

【XNOR】

【更深一层 计算更加复杂的函数】

(5)多元分类

【一对多】

 (6)代价函数

 

(7)反向传播

【怎么求偏导项 、 确定参数】 

【计算误差】

【计算偏导项】

 【理解反向传播】

(8)梯度检测

【theta是实数】

 【theta是向量】

 【当发现反向传播无误后,应理解关掉梯度检测】

(9)随机初始化 

【(对称权重)若初始化全为0,那么相似位置的参数会一直相等,神经网络变得没有意义】

 【随机初始化(打破对称)】

【如何选择神经网络结构】

(10)训练一个神经网络的步骤 

 

 

 

PS:神经网络反向传播的部分有些难理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值