(1)逻辑单元
(2)神经网络模型展示
【主要加入偏置量】
【注意下标】
(3)前向传播
【从前往后计算 a 值】
(4)举例
【AND】
【OR】
【NOT】
【XNOR】
【更深一层 计算更加复杂的函数】
(5)多元分类
【一对多】
(6)代价函数
(7)反向传播
【怎么求偏导项 、 确定参数】
【计算误差】
【计算偏导项】
【理解反向传播】
(8)梯度检测
【theta是实数】
【theta是向量】
【当发现反向传播无误后,应理解关掉梯度检测】
(9)随机初始化
【(对称权重)若初始化全为0,那么相似位置的参数会一直相等,神经网络变得没有意义】
【随机初始化(打破对称)】
【如何选择神经网络结构】
(10)训练一个神经网络的步骤
PS:神经网络反向传播的部分有些难理解