”高考“和“大数据”的亲密关系

原文链接

俗话说,没有高考的人生是不完美的人生,毕竟它是人生最重要的一个转折点,即便不能因此改变你的命运,但至少会决定你在哪个城市打LOL...哦不,我说的是高考可能会决定你在哪个城市工作&生活。

screenshot

言归正传,又是一年高考季,今天要和大家聊的是大数据能给高考带来什么?
选择题有规可循?大数据say no!
不想考高分的学生不是好学生,即便学渣也是如此,他们和学霸一样久经沙场,虽然技不如人,但他们总结的套路似乎比大家走的路还多,比如做选择题就有很多口诀。

如,不会做就选C;
还有:
三短一长选最长,
三长一短选最短,
长短不一就选B,
参差不齐就选D。

坊间传言,按照这些规律可以大幅提升选择题的准确率。

纳尼?糊里糊涂也能懵一个高分来?

事实上,已经有第三方用大数据测试给出了否定的答案,按照口诀中的规律来答题准确率并不会得到提升。虽然道理大家都懂,不过咱还是用数据说话!
根据过去几年高考试题和模拟试题测试的结果显示,选择题中,B选项的正确率最高,占比为26%~28%,C选项的正确率占比约为26%,不过是一个平均水平;另外,三长一短正确率仅有21%左右;三短一长正确率约26%~31%,错误率约68%~74%。
还有一个大家都知道,但又不肯承认的事实:大数据显示每个科目选择题ABCD四个选项的概率都在25%上下,一般最大不超过3%!
所以,大家还是不能抱有侥幸心理,做题还得靠真本事啊!
大数据能帮你把衣食住行解决了?
听起来像个噱头,其实不然!
用大数据来解决智能交通、智慧城市问题早已是学术界和产业界研究的课题,更不用谈高考这短短两天了。
不过喜闻乐见的是,今年高考期间,已经有相关服务上线。据了解,高德地图已经联合北京、上海、广州、深圳、重庆、济南、苏州等多地交警发布了《2017高考出行攻略》。其目的很简单,就是提醒考生在考试期间做好出行和饮食规划。
而其方式也很简单,就是通过往年高考期间高德地图历史出行交通大数据深入研判分析,包括考点避堵攻略、地铁附近考点出行攻略及周边的住宿、美食等。
按照这样的趋势,大数据可能要完全接管考生考试期间的衣食住行了!
大数据帮你填志愿,靠谱or not?
如果你认为大数据提供衣食住行服务已经很实用了,那么通过大数据分析来辅助填报志愿对考生来说可以说更是极具诱惑力。
过来人都知道,考个高分不代表你就一劳永逸了,七分成绩定,三分志愿拼!

于是,一个新的产业应运而生:大数据志愿服务!!!

screenshot

通俗的说,大数据志愿服务可以帮助你算出未来热门专业是哪些?就业率如何?往年录取情况如何?然后你可以根据这些信息来选取心仪的学校、专业...
目前有不少创业公司都开始涉足这一领域,并且逐渐受到了考生们的推崇。但行业也存在一些乱象,以大数据作为填报志愿的导向,理论上更加准确,但打着大数据幌子来骗取钱财的近两年也屡见不鲜。

有没有强大的数据库?数据来自哪里?...大家要擦亮眼睛看清楚!

上面提到的只是大数据应用的冰山一角,它已经渗透到了大众生活的方方面面。
那么,在你的眼中大数据究竟可以做什么?
对高考期间起的作用你怎么看?

原文链接

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
由于高考自动推荐院校和专业的算法有很多种,因此需要根据具体的算法选择相应的代码实现。以下是一些可能有用的算法和代码实现: 1. 基于专业排名的推荐算法 这种算法基于历年高校专业排名数据,通过计算学生的高考成绩和其他指标,来预测最适合的院校和专业。以下是该算法的基本实现代码: ```python def recommend_school_major(score, other_criteria): """ 输入:高考分数和其他指标 输出:推荐的院校和专业 """ # 读取省份招生计划数据和历年专业排名数据 admission_data = read_admission_data() rank_data = read_rank_data() # 根据成绩和其他指标过滤出符合条件的院校和专业 qualified_schools_majors = filter_schools_majors(score, other_criteria, admission_data, rank_data) # 根据平均分、最高分、录取分数线等指标对院校和专业排序 ranked_schools_majors = rank_schools_majors(qualified_schools_majors, rank_data) # 按照排序结果返回最优的院校和专业 return ranked_schools_majors[0] ``` 2. 基于聚类的推荐算法 这种算法将各个高校的专业按照一定的特征进行聚类,然后根据学生的高考成绩和其他指标,来推荐最符合其喜好的院校和专业。以下是该算法的基本实现代码: ```python def recommend_school_major(score, other_criteria): """ 输入:高考分数和其他指标 输出:推荐的院校和专业 """ # 读取所有高校的专业和特征数据 college_data = read_college_data() # 将所有专业按照特征进行聚类 clusters = cluster_colleges(college_data) # 根据成绩和其他指标,计算学生的偏好向量 preference_vector = calculate_preference(score, other_criteria) # 根据偏好向量,计算每个聚类的得分 cluster_scores = calculate_cluster_scores(clusters, preference_vector) # 根据聚类得分,推荐最优的院校和专业 return recommend_top_college(cluster_scores) ``` 需要说明的是,以上代码实现只是伪代码,具体实现需要考虑很多细节问题,比如特征选取、聚类算法、成绩和指标的加权方式等等。同时,由于算法的成功与否还需要评测数据的支撑,因此在实际应用中,还需要进行大量的算法验证和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值