人工智能(4)- 实现多层神经网络

本文介绍了如何实现多层神经网络,包括MLP的前向传播、误差计算和反向传播过程。通过MNIST数据集,训练模型识别手写数字,设置了L2正则化、学习率等参数,并在200个epochs后评估了模型的训练和验证精度,最终测试准确率达到97.54%。
摘要由CSDN通过智能技术生成

1.单层神经网络

2.多层神经网络

3.MLP的3个步骤

MLP learning procedure in three simple steps:

  1. Starting at the input layer, we forward propagate the patterns of the training data through the network to generate an output.
  2. Based on the network's output, we calculate the error that we want to minimize using a cost function that we will describe later.
  3. We backpropagate the error, find its derivative with respect to each weight inthe network, and update the model.

前向算法

隐藏层中的每个单元链接所有输入层,计算隐藏层的激活单元

输出也是同样的方法

4.Obtaining the MNIST dataset

获取60000个训练集和10000个测试集,将原始的数据转换成784(28*28)像素的数据。

# -*- coding: utf-8 -*-
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值