树莓派4B+NCS2代测试yolov3和yolov3_tiny实现object_detection

本文介绍了如何在树莓派4B上利用英特尔神经计算棒解决yolo模型运行错误,并通过详细步骤展示从安装NCS环境、模型格式转换到树莓派上部署的过程,以提高在资源有限的设备上的运行速度。
摘要由CSDN通过智能技术生成

使用英特尔神经计算棒主要有两个原因,一、单独在树莓派4B上测试yolo会出现“段错误”,修改过后又会出现“总线错误”,这个问题没有得到解决,只好添加神经计算棒(有出现并解决此类问题的小伙伴可以讨论一下)二、使用神经计算棒可以明显提高模型在树莓派这种计算量较小的设备上的速度。

避免踩坑,总的步骤如下:

一、在树莓派上安装NCS环境
二、在windows上安装NCS环境(格式转换用到)
三、格式转换
四、在树莓派上部署

具体步骤:

一、在树莓派上安装NCS环境

1、下载OpenVINO toolkit for Raspbian

这是OpenVINO工具包的最新版本,点击下面链接进行下载
l_openvino_toolkit_runtime_raspbian_p_2019.3.334.tgz
在这里插入图片描述

2、树莓派上安装OpenVINO工具包

下载好工具包既可以安装了,可以参考官网教程:Install OpenVINO™ toolkit for Raspbian* OS
我这里命令和官网有些许不同,但是效果是一样的。
下载完后工具包位于/home/pi/Downloads目录下,如果不是,可以创建一个Downloads目录并把工具包放在此目录下
切换至Downloads目录下:

cd  ~/Downloads

解压包:

tar -xf l_openvino_toolkit_runtime_raspbian_p_2019.3.334.tgz

安装cmake(后面会用到):

apt install cmake

配置路径与环境:
执行以下命令,会自动对setupvars.sh文件做修改

sed -i "s|<INSTALLDIR>|$(pwd)/l_openvino_toolkit_runtime_raspbian_p_2019.3.334|" l_openvino_toolkit_runtime_raspbian_p_2019.3.334/bin/setupvars.sh

配置环境(两种做法):
一种临时的,只对该次窗口有效

suorce l_openvino_toolkit_runtime_raspbian_p_2019.3.334/bin/setupvars.sh

另一种永久的

leafpad /home/pi/.bashrc

打开.bashrc文件,在最后一行添加

source /home/pi/Downloads/l_openvino_toolkit_runtime_raspbian_p_2019.3.334/bin/setupvars.sh

在这里插入图片描述
保存,再打开一个终端,如果出现:

[setupvars.sh] OpenVINO environment initialized

就表示成功了

添加USB规则:
将当前Linux用户添加到users组:

sudo usermod -a -G users "$(whoami)"

注:1、"$(whoami)"是用户名,2、这里要说的是我们现在是root用户,如果打开新窗口的话起始用户是pi,所以出现[ setupvars.sh] OpenVINO environment initialized,是对于pi用户来说的。如果在新窗口中用root执行程序,其实并没有成功加载[ setupvars.sh] OpenVINO environment initialized,需要自己再执行一遍
source/home/pi/Downloads/l_openvino_toolkit_runtime_raspbian_p_2019.3.334/bin/setupvars.sh,才能给root用户配置好OpenVINO environment initialized。
接下来配置USB规则,执行:

sh l_openvino_toolkit_runtime_raspbian_p_2019.3.334/install_dependencies/install_NCS_udev_rules.sh

在这里插入图片描述
到这里就成功安装好计算棒所需要的所有东西了。

demo测试验证安装是否成功
运行人脸检测的实例

cd l_openvino_toolkit_runtime_raspbian_p_2019.3.334/deployment_tools/inference_engine/samples
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-march=armv7-a"
make -j2 object_detection_sample_ssd

编译完成后,下载网络和权重文件:

wget --no-check-certificate https://download.01.org/opencv/2019/open_model_zoo/R1/models_bin/face-detection-adas-0001/FP16/face-detection-adas-0001.bin
wget --no-check-certificate https://download.01.org/opencv/2019/open_mod
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值