三维张量的torch.max(), torch.min()中参数dim解释

以torch.max()为例,构建一个三维张量,

import torch
import numpy as np
import random

pra =  torch.rand(2,3,4)
print(pra,pra.shape)
a0, predicted0 = torch.max(pra.data, 0)
a1, predicted1 = torch.max(pra.data, 1)
a2, predicted2 = torch.max(pra.data, 2)
print("a0 = ",a0,'\n','predicted0=', predicted0)
print("a1 = ",a1,'\n','predicted1=', predicted1)
print("a2 = ",a2,'\n','predicted2=', predicted2)

其中pra为:

 1. 当dim=0 是,表示寻找tensor1(0,i,j)与tensor2(1,i,j)的最大值,返回的是0和1.

 2. 当dim=1时,寻找tensor1(i,j)与tensor1(k,j)的最大值,返回输出的第一行。

寻找tensor2(i,j)与tensor1(k,j)的最大值,返回输出的第二行。

 

3. 当dim=2时,寻找tensor1(i,j)与tensor1(i,k)的最大值,返回输出的第一行。

寻找tensor2(i,j)与tensor1(i,k)的最大值,返回输出的第二行。

第一次写,感觉说的不是很明白,感兴趣的小伙伴,不懂得可以给我留言。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值