以torch.max()为例,构建一个三维张量,
import torch
import numpy as np
import random
pra = torch.rand(2,3,4)
print(pra,pra.shape)
a0, predicted0 = torch.max(pra.data, 0)
a1, predicted1 = torch.max(pra.data, 1)
a2, predicted2 = torch.max(pra.data, 2)
print("a0 = ",a0,'\n','predicted0=', predicted0)
print("a1 = ",a1,'\n','predicted1=', predicted1)
print("a2 = ",a2,'\n','predicted2=', predicted2)
其中pra为:
1. 当dim=0 是,表示寻找tensor1(0,i,j)与tensor2(1,i,j)的最大值,返回的是0和1.
2. 当dim=1时,寻找tensor1(i,j)与tensor1(k,j)的最大值,返回输出的第一行。
寻找tensor2(i,j)与tensor1(k,j)的最大值,返回输出的第二行。
3. 当dim=2时,寻找tensor1(i,j)与tensor1(i,k)的最大值,返回输出的第一行。
寻找tensor2(i,j)与tensor1(i,k)的最大值,返回输出的第二行。
第一次写,感觉说的不是很明白,感兴趣的小伙伴,不懂得可以给我留言。