steptoward
码龄7年
关注
提问 私信
  • 博客:86,270
    86,270
    总访问量
  • 63
    原创
  • 42,520
    排名
  • 455
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-01-22
博客简介:

steptoward的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    753
    当月
    19
个人成就
  • 获得659次点赞
  • 内容获得54次评论
  • 获得668次收藏
  • 代码片获得1,134次分享
创作历程
  • 53篇
    2024年
  • 4篇
    2023年
  • 4篇
    2022年
  • 2篇
    2020年
成就勋章
TA的专栏
  • 编程基础
    5篇
  • 前沿技术知识
    2篇
  • 图像生成算法
    1篇
  • Leetcode
    3篇
  • 点云深度学习
    12篇
  • PCL点云配准
    5篇
  • 系统架构及设计模式
  • 代码编译
    1篇
  • Apollo源码学习
    1篇
  • Matlab
    1篇
兴趣领域 设置
  • 人工智能
    目标跟踪自动驾驶边缘计算智慧城市聚类
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MacOS编译hello_xr——记一次CMake搜索路径限制导致的ANDROID_NATIVE_APP_GLUE not found

也就是说, 在给定的目录下查找android_native_app_glue.h这个文件, 找到后将其所在目录赋给ANDROID_NATIVE_APP_GLUE.在交叉编译时,CMake 的 CMAKE_FIND_ROOT_PATH 或 CMAKE_SYSROOT 参数可能会限制搜索路径。于是确认了下系统中该目录是否存在该文件, 结果发现是有的.那么为什么查找结果是not found呢?经过调整后,就编译成功啦。
原创
发布博客 昨天 10:38 ·
325 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

DBSCAN聚类

参数敏感: DBSCAN 对于 eps 和 min_points 参数较为敏感,参数设置不当可能会导致聚类结果不理想。-处理高维数据的能力有限: 在高维空间中,确定合适的 eps 值变得困难,因为高维数据的密度计算变得复杂。eps:定义了点与点之间的最大距离,决定了一个点是否在另一个点的邻域中。这是密度聚类的关键参数。-大规模数据的计算效率: 在非常大的数据集上,DBSCAN 的计算效率可能不如其他算法。min_points:在一个点的邻域内,最少需要包含多少个点才能被认为是核心点。
原创
发布博客 2024.08.13 ·
318 阅读 ·
9 点赞 ·
1 评论 ·
4 收藏

MAC系统brew安装包的时候报错

install.
原创
发布博客 2024.08.10 ·
758 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

【Pytorch】torch.ne | torch.nonzero

as_tuple (bool, 可选): 如果为 True,则输出是一个元组,每个元组包含一个维度的索引。它返回一个与输入张量形状相同的布尔张量,对于对应位置不相等的元素,输出为 True,否则为 False。other (Tensor 或者 数值): 待比较的第二个输入,可以是一个张量或一个标量。out (Tensor, 可选): 用于存储输出结果的张量。out (Tensor, 可选): 用于存储输出结果的张量。input (Tensor): 待查找非零元素的输入张量。
原创
发布博客 2024.08.08 ·
351 阅读 ·
9 点赞 ·
1 评论 ·
5 收藏

【Pytorch】topk函数

topk 是 PyTorch 中的一个函数,用于从张量中选取最大(或最小)的 k 个元素及其对应的索引。
原创
发布博客 2024.08.06 ·
389 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

编程语言漫谈之「初始化与赋值」——以C++和汇编语言为示例

在static 修饰局部变量时, 是有区别的例如,// 定义时直接初始化a++;func();// 第一次调用,a 被初始化为 10,然后自增为 11func();// 第二次调用,a 保持其上次的值 11,然后自增为 12func();// 第三次调用,a 保持其上次的值 12,然后自增为 13return 0;// 只声明但未显式初始化a = 10;// 每次调用函数时都将 a 赋值为 10a++;// 自增func();// 第一次调用, 11func();
原创
发布博客 2024.07.29 ·
394 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

编程语言「描述符」漫谈——以C++与Rust为例的行为声明与类型描述

这里的修饰符const和说明符int是混在一起用的. 这里其实缺失了一个声明符,来告诉读者这句代码是在声明一个变量.但其他语言, 例如rust语言中, 就会用「let」声明符, 表示当前语句是在进行变量声明.例如, 下述语句表示定义一个可变变量(mut表示可变的, rust中默认是不可变的).这里并不需要用“func”来告诉读者, 这里要进行一个函数的声明.swift语言就是严格遵循这些描述符的, 例如,是声明符, 表示声明一个函数,, 表示编译成OC兼容函数,又如, 定义变量时,
原创
发布博客 2024.07.29 ·
595 阅读 ·
14 点赞 ·
0 评论 ·
5 收藏

如何清理僵尸进程

僵尸进程是在子进程已经终止, 但其退出状态尚未被父进程读取时,仍然保留在进程表中的进程。尽管它们不会消耗系统资源,但会占用进程表项,可能导致系统无法创建新的进程。例如, 在执行nvidia-smi命令时, 看到有许多进程在运行, 但有些进程的Process name 栏只有一条横杠, 并没有名字, 那么这就有可能是僵尸进程.
原创
发布博客 2024.07.15 ·
498 阅读 ·
10 点赞 ·
0 评论 ·
4 收藏

【基于深度学习方法的激光雷达点云配准系列之GeoTransformer】——粗配准

从本文开头的图中可以直接明了地看出, forward函数中, get_node_correspondences步骤的输出——gt_node_corr_indices, gt_node_corr_overlaps, 是coarse_target函数的所有输入. coarse_target函数中, 首先根据设定的overlap阈值, 过滤中有效的真值匹配点对, 然后分别获取对应的ref点索引、src点索引以及overlap程度, 返回这些结果.这个类中是没有可学习的网络参数的.
原创
发布博客 2024.07.09 ·
1023 阅读 ·
22 点赞 ·
4 评论 ·
26 收藏

Error loading webview: Error: Could not register service worker: InvalidStateError: Failed to regist

最终, 尝试了一下把当前打开的几个Vscode窗口全部关闭, 再在 terminal中 执行code --no-sandbox, 终于成功啦。
原创
发布博客 2024.07.09 ·
456 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

【Git】忘记切换分支! 如何将一个分支上的修改转移到另一个分支上去?

当然啦, git还有很多其他的方法来解决这个问题, 比如创建补丁文件, cherry-pick等等, 后续再一起学习吧~使用git stash pop来。特定的stash条目。
原创
发布博客 2024.07.04 ·
774 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

华为智能驾驶方案2024

设备方面:华为ADS智驾方案依旧坚持激光雷达+毫米波雷达+摄像头的多传感器融合路线1)单车传感器数量呈现下降趋势,包括激光雷达从3个减配至1个、毫米波雷达从6R减配至3R、摄像头数量亦有所减少;2)车侧算力从400TOPS降低至200TOPS、更贴合实际需求,同时或在探索“Max + Pro”双版本智驾硬件配置方案。算法方面1)障碍物识别方面,从BEV升级至G0D,优化对异形障碍物、罕见障碍物的识别性能;2)车道识别及路径规划方面,从1.0的“有高精地图”转向2.0的“无图”,无外购高精地图基
原创
发布博客 2024.06.29 ·
398 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

【5minC++基本功】——C++常用的命名规范

原创
发布博客 2024.06.29 ·
125 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【基于深度学习方法的激光雷达点云配准系列之GeoTransformer】——模型部分浅析(1)

组成的feats_list.
原创
发布博客 2024.06.28 ·
1228 阅读 ·
20 点赞 ·
2 评论 ·
17 收藏

【Python】抽象基类——class BaseTrainer(abc.ABC)

抽象基类(Abstract Base Class,ABC)。这里的abc是Python标准库中的abc模块,它提供了定义抽象基类的能力。通过继承自abc.ABC,BaseTrainer类可以包含抽象方法,强制要求任何继承它的子类必须实现这些抽象方法。这样的设计通常用于规定接口或者模板方法,增加代码的可扩展性和可维护性。这样的写法, 遂查了一下,
原创
发布博客 2024.06.19 ·
184 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【Python深度学习】——使用Logging记录模型训练过程

使用Logging记录级别示例级别数值DEBUGlogging.debug10INFOlogging.info20WARNINGlogging.warning30ERRORlogging.error40CRITICALlogging.critical50
原创
发布博客 2024.06.19 ·
421 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

【基于深度学习方法的激光雷达点云配准系列之GeoTransformer】——数据部分梳理(1)

使用自己的数据进行点云数据配准的训练时, 需要运行GeoTransformer/experiments/geotransformer.kitti.stage5.gse.k3.max.oacl.stage2.sinkhorn/下面的trainval.py,它是调用同目录下的dataset.py来组织数据的。而在这个文件的开头, 就import 了geotransformer.utils.data模块中的三个函数, 因此理解这个模块是非常重要的。
原创
发布博客 2024.06.12 ·
1117 阅读 ·
29 点赞 ·
2 评论 ·
17 收藏

【Python深度学习】——交叉熵|KL散度|交叉熵损失函数

交叉熵损失函数的目标是最小化预测概率分布与真实分布之间的差异。对于真实分布P 和预测分布 𝑄,交叉熵𝐻(𝑃,𝑄) 的定义为Lyy−∑i1Kyilog⁡yiLyy​−i1∑K​yi​logy​i​yiy_{i}yi​是实际标签的独热编码(one-hot encoding)如果真实类别是 𝑖,则yi1y_{i}=1yi​1, 其余为 0;yi\hat y_{i}y​i​是模型预测的类别 𝑖 的概率。
原创
发布博客 2024.06.11 ·
1053 阅读 ·
25 点赞 ·
0 评论 ·
28 收藏

【Python深度学习】——信息量|熵

这个硬币有两个面:正面(H)和反面(T),每次掷硬币出现正面或反面的概率都是 0.5。——概率密度越均匀, 不确定性越高,即熵越高;概率密度越聚拢, 不确定性越低, 熵越低.此外, 事件独立时, 两个事件同时发生的信息量,等于两个事件的信息量相加.构成. 例如, 抛硬币的结果出现正面和反面就构成一个完整的系统.如下图所示,左图为一个平均分布, 不确定性较高;以2为底, 是转换到二进制下的表示复杂度.一件事越容易发生, 它的信息量就越小.表示事件 ( x ) 的信息量,熵的值就等于概率分布中所有信息量的。
原创
发布博客 2024.06.10 ·
805 阅读 ·
15 点赞 ·
0 评论 ·
14 收藏

【5minC++基本功】——左值与右值|左值引用与右值引用

— 简单地说, 它是指向内存位置的表达式,其值可以被修改可以出在等号左边;能够取地址具有别名不能被赋值的表达式,通常是临时值或字面常量右值分为纯右值与将亡值它表示资源即将被移动或者销毁的对象。
原创
发布博客 2024.06.10 ·
499 阅读 ·
9 点赞 ·
1 评论 ·
7 收藏
加载更多