组合数:从
n
n
n个不同元素中取出
m
(
m
≤
n
)
m(m≤n)
m(m≤n)个元素的所有组合的个数,叫做从
n
n
n个不同元素中取出
m
m
m个元素的组合数。计算公式为:
C
(
n
,
m
)
=
n
!
/
(
(
n
−
m
)
!
×
m
!
)
,
where
m
≤
n
C(n,m)=n!/((n-m)!\times m!), \text{where}\ m\leq n
C(n,m)=n!/((n−m)!×m!),where m≤n
- 性质1: C ( n , m ) = C ( n , n − m ) C(n,m)= C(n,n-m) C(n,m)=C(n,n−m)
- 性质2: C ( n , m ) = C ( n − 1 , m − 1 ) + C ( n − 1 , m ) C(n,m)=C(n-1,m-1)+C(n-1,m) C(n,m)=C(n−1,m−1)+C(n−1,m)
第一种方法:打表
根据性质2直接构建一个 n × n n\times n n×n的矩阵进行计算:
public class Template {
static int mod = (int) 1e9 + 7;
static int max = 110;
static long[][] com = new long[max][max];
public static void main(String[] args) {
int n = 100, m = 30;
for (int i = 0; i < max; i++) {
com[i][0] = com[i][i] = 1;
for (int j = 1; j < i; j++) {
com[i][j] = (com[i - 1][j - 1] + com[i - 1][j]) % mod;
}
}
System.out.println(com[n][m]);
}
}
空间复杂度: O ( n 2 ) O(n^2) O(n2)
预处理时间复杂度: O ( n 2 ) O(n^2) O(n2),查询时间复杂度: O ( 1 ) O(1) O(1)
第二种方法:阶乘无模
根据组合的组合数的计算公式 C ( n , m ) = n ! / ( ( n − m ) ! × m ! ) C(n,m)=n!/((n-m)!\times m!) C(n,m)=n!/((n−m)!×m!)进行:
public class Template {
static int mod = (int) 1e9 + 7;
static int max = 110;
static long[] fac = new long[max];
public static void main(String[] args) {
int n = 20, m = 10;
fac[0] = 1;
for (int i = 1; i < max; i++) {
fac[i] = (fac[i - 1] * i);
}
System.out.println(fac[n] / fac[m] / fac[n - m]);
}
}
空间复杂度: O ( n ) O(n) O(n)
预处理时间复杂度: O ( 1 ) O(1) O(1),查询时间复杂度: O ( n ) O(n) O(n)
由于涉及除法,无法直接取模,所以引入乘法逆元。
第三种方法:乘法逆元
逆元:对于 a a a和 p p p( a a a和 p p p互素),若 a ∗ b % p ≡ 1 a*b\%p\equiv1 a∗b%p≡1,则称 b b b的最小正整数解为 a a%p a的逆元。
当求解 ( a / b ) % p (a/b)\%p (a/b)%p,如果知道 b % p b\%p b%p的逆元为 c c c,那么可以转化为 ( a / b ) % p = a ∗ c % p = ( a % p ) ( c % p ) % p (a/b)\%p=a*c\%p=(a\%p)(c\%p)\%p (a/b)%p=a∗c%p=(a%p)(c%p)%p。暴力做法:
public class Template {
static int mod = (int) 1e9 + 7;
static int max = 110;
static long[] fac = new long[max];
static long[] inv = new long[max];
public static void main(String[] args) {
int n = 100, m = 30;
inv[0] = fac[0] = 1;
for (int i = 1; i < max; i++) {
fac[i] = (fac[i - 1] * i) % mod;
inv[i] = inv(fac[i]);
}
System.out.println(((fac[n] * inv[m]) % mod * inv[n - m]) % mod);
}
public static long inv(long a) {
for (int x = 1; x < mod; x++) {
if (a * x % mod == 1) return x;
}
return 0;
}
}
空间复杂度: O ( n ) O(n) O(n)
预处理时间复杂度: O ( p ) O(p) O(p),其中 p = m o d p=mod p=mod,查询时间复杂度: O ( 1 ) O(1) O(1)
第四种方法:乘法逆元+快速幂+阶乘
费马小定理:对于a和素数p,满足 a p − 1 % p ≡ 1 a^{p-1}\%p\equiv 1 ap−1%p≡1。
因为 a p − 1 = a p − 2 ∗ a a^{p-1}=a^{p-2}*a ap−1=ap−2∗a,所以有 a p − 2 ∗ a % p ≡ 1 a^{p-2}*a\%p\equiv 1 ap−2∗a%p≡1。根据逆元的定义可知, a p − 2 a^{p-2} ap−2是 a a a的逆元。因此可以将求解逆元的问题转换为 a p − 2 a^{p-2} ap−2的快速幂问题。
public class Template {
static int mod = (int) 1e9 + 7;
static int max = 110;
static long[] fac = new long[max];
static long[] inv = new long[max];
public static void main(String[] args) {
int n = 100, m = 30;
inv[0] = fac[0] = 1;
for (int i = 1; i < max; i++) {
fac[i] = (fac[i - 1] * i) % mod;
inv[i] = inv(fac[i]);
}
System.out.println(((fac[n] * inv[m]) % mod * inv[n - m]) % mod);
}
public static long pow(long a, long b) {
long ans = 1;
while (b > 0) {
if ((b & 1) == 1) ans = (ans * a) % mod;
a = a * a % mod;
b = b >> 1;
}
return ans;
}
public static long inv(long a) {
return pow(a, mod - 2);
}
}
空间复杂度: O ( n ) O(n) O(n)
预处理时间复杂度: O ( log p ) O(\log p) O(logp),其中 p = m o d p=mod p=mod,查询时间复杂度为 O ( 1 ) O(1) O(1)