牛吃草问题

【问题描述】

一片草场的青草每天都匀速生长,这片青草可供27头牛吃6天,或供23头牛吃9天,那么可供21头牛吃几天?

【求解】


解:草场的原有草量固定,设为x,青草每天的生长速度设为y,每头牛每天吃的草量设为z。设可供21头牛吃t天。

由题意可得方程组:

联立第1、2个方程(消元)可得:

y = 15z,代入第三个方程得:

将y = 15z代入第一个方程(消元)得

x = 72z

于是,求解得 t =12.

因此可供21头牛吃12天。

吃草问题是一种经典的数学建模题,在计算机科学领域,尤其是算法设计数据结构学习过程中也经常会被提到。下面我们就基于C++语言的特点来讲解如何解决这类问题。 ### 吃草问题简介 假设有一片地,其上不断生长着青;同时有若干头持续地在这块地上进食。已知每头每天消耗一定量的,并且这片地每天新增长固定数量的新鲜牧。我们需要确定的是如果给定初始存量、每日增量以及每头日均食量等条件后,需要多少天才能将所有现存及新生之完全完等问题的答案。 此类题目通常会包含以下几个要素: - 初始时的总量 \(M\) - 每单位时间内的自然增长量 \(r\) (可以为负值表示减少) - 单位时间内一头的数量 \(e\) - 当前共有几只参与进食活动 #### 使用C++解决问题的基本步骤: 1. **输入处理**:首先读入相关的参数包括但不限于上述四种基本因素。 2. **计算核心公式推导** - 若仅考虑静态情况即忽略掉后续产生的新,则所需时间为\(T = \lceil M / n * e\rceil\) 其中n代表当前存在的数; - 而动态情形下综合考量了原有存量加上期间生成部分后的总体积变化率应等于全体牲畜总的消费速率才会停止进化过程达到平衡点故而得到方程组形式求解未知变量如最终稳定状态下的群体规模或是耗尽全部资源所需的时刻长度等等信息内容。 ```cpp #include <iostream> using namespace std; int main(){ double m,r,e,n; cout << "请输入原始量m:" ; cin >> m; cout << "请输入每天增加量r(如果是减少则填入负数):" ; cin >> r ; cout << "请输入每头一天吃草量e:" ; cin >> e ; cout << "请输入现有的数量n:" ; cin >> n ; if(r >=0 && e*n <=r){ //永远不会完的情况 cout<<"由于的增长速度大于等于群食用的速度,所以永远不可能把所有的完."<<endl; }else{ int days =(int)(m/(double)(n*e-r)); if(m%(n*e-r)!=0)days+=1;//向上取整操作 cout << "预计将在第"<<days <<"天结束之前或当天恰好把草场的所有完."<< endl; } return 0;} ``` 通过以上程序段落展示了简单的实现思路其中需要注意边界条件例如当原不存在额外再生能力也就是\(r<=0\)并且实际需求超出供给限制时候应当特别判断避免出现错误结果输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值