【问题描述】
一片草场的青草每天都匀速生长,这片青草可供27头牛吃6天,或供23头牛吃9天,那么可供21头牛吃几天?
【求解】
解:草场的原有草量固定,设为x,青草每天的生长速度设为y,每头牛每天吃的草量设为z。设可供21头牛吃t天。
由题意可得方程组:
联立第1、2个方程(消元)可得:
y = 15z,代入第三个方程得:
将y = 15z代入第一个方程(消元)得
x = 72z
于是,求解得 t =12.
因此可供21头牛吃12天。
一片草场的青草每天都匀速生长,这片青草可供27头牛吃6天,或供23头牛吃9天,那么可供21头牛吃几天?
解:草场的原有草量固定,设为x,青草每天的生长速度设为y,每头牛每天吃的草量设为z。设可供21头牛吃t天。
由题意可得方程组:
联立第1、2个方程(消元)可得:
y = 15z,代入第三个方程得:
将y = 15z代入第一个方程(消元)得
x = 72z
于是,求解得 t =12.
因此可供21头牛吃12天。
3220

被折叠的 条评论
为什么被折叠?