Stanford UFLDL教程 Exercise: Implement deep networks for digit classification

Exercise: Implement deep networks for digit classification

Contents

[hide]

Overview

In this exercise, you will use a stacked autoencoder for digit classification. This exercise is very similar to the self-taught learning exercise, in which we trained a digit classifier using a autoencoder layer followed by a softmax layer. The only difference in this exercise is that we will be using two autoencoder layers instead of one and further finetune the two layers.

The code you have already implemented will allow you to stack various layers and perform layer-wise training. However, to perform fine-tuning, you will need to implement backpropogation through both layers. We will see that fine-tuning significantly improves the model's performance.

In the file stackedae_exercise.zip, we have provided some starter code. You will need to complete the code instackedAECost.m, stackedAEPredict.m andstackedAEExercise.m. We have also provided params2stack.m andstack2params.m which you might find helpful in constructing deep networks.

Dependencies

The following additional files are required for this exercise:

You will also need your code from the following exercises:

If you have not completed the exercises listed above, we strongly suggest you complete them first.

Step 0: Initialize constants and parameters

Open stackedAEExercise.m. In this step, we set meta-parameters to the same values that were used in previous exercise, which should produce reasonable results. You may to modify the meta-parameters if you wish.

Step 1: Train the data on the first stacked autoencoder

Train the first autoencoder on the training images to obtain its parameters. This step is identical to the corresponding step in the sparse autoencoder and STL assignments, complete this part of the code so as to learn a first layer of features using yoursparseAutoencoderCost.m and minFunc.

Step 2: Train the data on the second stacked autoencoder

We first forward propagate the training set through the first autoencoder (usingfeedForwardAutoencoder.m that you completed in Exercise:Self-Taught_Learning) to obtain hidden unit activations. These activations are then used to train the second sparse autoencoder. Since this is just an adapted application of a standard autoencoder, it should run similarly with the first. Complete this part of the code so as to learn a first layer of features using your sparseAutoencoderCost.m and minFunc.

This part of the exercise demonstrates the idea of greedy layerwise training with thesame learning algorithm reapplied multiple times.

Step 3: Train the softmax classifier on the L2 features

Next, continue to forward propagate the L1 features through the second autoencoder (usingfeedForwardAutoencoder.m) to obtain the L2 hidden unit activations. These activations are then used to train the softmax classifier. You can either usesoftmaxTrain.m or directly use softmaxCost.m that you completed inExercise:Softmax Regression to complete this part of the assignment.

Step 4: Implement fine-tuning

To implement fine tuning, we need to consider all three layers as a single model. ImplementstackedAECost.m to return the cost and gradient of the model. The cost function should be as defined as the log likelihood and a gradient decay term. The gradient should be computed usingback-propagation as discussed earlier. The predictions should consist of the activations of the output layer of the softmax model.

To help you check that your implementation is correct, you should also check your gradients on a synthetic small dataset. We have implementedcheckStackedAECost.m to help you check your gradients. If this checks passes, you will have implemented fine-tuning correctly.

Note: When adding the weight decay term to the cost, you should regularize only the softmax weights (do not regularize the weights that compute the hidden layer activations).

Implementation Tip: It is always a good idea to implement the code modularly and check (the gradient of) each part of the code before writing the more complicated parts.

Step 5: Test the model

Finally, you will need to classify with this model; complete the code in stackedAEPredict.m to classify using the stacked autoencoder with a classification layer.

After completing these steps, running the entire script in stackedAETrain.m will perform layer-wise training of the stacked autoencoder, finetune the model, and measure its performance on the test set. If you've done all the steps correctly, you should get an accuracy of about 87.7% before finetuning and 97.6% after finetuning (for the 10-way classification problem).

from: http://ufldl.stanford.edu/wiki/index.php/Exercise:_Implement_deep_networks_for_digit_classification

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
校园悬赏任务平台对字典管理、论坛管理、任务资讯任务资讯公告管理、接取用户管理、任务管理、任务咨询管理、任务收藏管理、任务评价管理、任务订单管理、发布用户管理、管理员管理等进行集中化处理。经过前面自己查阅的网络知识,加上自己在学校课堂上学习的知识,决定开发系统选择小程序模式这种高效率的模式完成系统功能开发。这种模式让操作员基于浏览器的方式进行网站访问,采用的主流的Java语言这种面向对象的语言进行校园悬赏任务平台程序的开发,在数据库的选择上面,选择功能强大的Mysql数据库进行数据的存放操作。校园悬赏任务平台的开发让用户查看任务信息变得容易,让管理员高效管理任务信息。 校园悬赏任务平台具有管理员角色,用户角色,这几个操作权限。 校园悬赏任务平台针对管理员设置的功能有:添加并管理各种类型信息,管理用户账户信息,管理任务信息,管理任务资讯公告信息等内容。 校园悬赏任务平台针对用户设置的功能有:查看并修改个人信息,查看任务信息,查看任务资讯公告信息等内容。 系统登录功能是程序必不可少的功能,在登录页面必填的数据有两项,一项就是账号,另一项数据就是密码,当管理员正确填写并提交这二者数据之后,管理员就可以进入系统后台功能操作区。项目管理页面提供的功能操作有:查看任务,删除任务操作,新增任务操作,修改任务操作。任务资讯公告信息管理页面提供的功能操作有:新增任务资讯公告,修改任务资讯公告,删除任务资讯公告操作。任务资讯公告类型管理页面显示所有任务资讯公告类型,在此页面既可以让管理员添加新的任务资讯公告信息类型,也能对已有的任务资讯公告类型信息执行编辑更新,失效的任务资讯公告类型信息也能让管理员快速删除。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值