§6 不等式
1.基本不等式
5.一些重要不等式
在下面1)~5)各式中,设 a >b, 则
1) a ± c > b ± c
2) ac > bc (c>0); ac<bc (c<0)
3) ,
4) an>bn ( n>0, a>0, b>0) ; an<bn ( n<0, a>0, b>0)
5) (n为正整数,a>0,b>0)
6)设 且 b, d 同号,则
(1) 绝对值的定义
-
实数a的绝对值
实数的绝对值是数轴上点到原点的距离.
-
复数Z=a+bi的模(绝对值):
注:实数的绝对值实际上是复数模(绝对值)的特例.
(2) 有关绝对值的不等式
(a) 若a , b,…, k为任意复数(包含实数),则
(b) 若a ,b为任意复数(包含实数),则
(c) 若 则
-b≤a≤b 特别有
(d) 若 则 a>b 或 a<-b
(e)
(f) 若a , b,…,k为任意复数(包含实数),则
(g) 若a , b,…,k为任意复数(包含实数),则
1) sinx<x<tgx (0<x< )
2) cosx< <1 (0<x<π )
3) ( )
4) (-∞<x<∞, x≠0 )
5) ( x>0 )
6) ( 0<x< )
7) ( 0<x<1, x≠ )
8) ( x≠0 )
9) ( x<1, x≠0 )
10) (n为自然数,x>0)
11) ( x≠0 )
12) ( x>-1, x≠0 )
13) ( x>-1, x≠0 )
14) ( x> -1, x≠0 )
特别取 (n为自然数 ), 有
15)lnx≤ x-1 ( x>0 )
16) ( x<1, x≠0 )
17) ( n>0, x>0 )
18)
19)
(以下各式中Z为复数)
20)
21)
22)
23)
24)
1) 几个数的算术平均值的绝对值不超过这些数的均方根.
即
等号仅当 a1 = a2 = … = an 时成立.
2) 设 a1, a2,…,an 均为正数,则它们的几何平均值不超过算术平均值.
即
等号仅当 a1 = a2 = … = an 时成立.
3) 对几个正数 a1, a2,…, an 的加权平均值
有
等号仅当 a1 = a2 = … = an 时成立.
4) 设a1, a2,…, an 均为正数, ,则对n个正数的几何平均值有:
1) 柯西(Cauchy)不等式
设 ai ,bi ( i=1,2,…,n)为任意实数,则
等号仅当 时成立.
此不等式说明两矢量内积小于等于两矢量长度之积.
2) 赫尔德( )不等式
(a) 设 ai ,bi ,li ( i=1,2,n) 为正数,又
为正数,且 ,则
等号仅当 时成立.
(b) 设 ai , bi ( i=1,2,…,n) 为正数,又 k>0, k≠1,k’与 k 共轭,
即 则
(k>1)
( k<1)
等号仅当 时成立.
3) 闵可夫斯基不等式
设 ai >0, bi >0 ( i=1, 2,…,n), 又 r>0, r≠1 ,
则 (r>1)
(r<1)
等号仅当 时成立.
当 r=2 时,此不等式又称为三角形不等式,表明三角形两边之和大于第三边.
4) 契比雪夫不等式
设 ai >0, bi >0 ( i=1,2,…,n),
若 a1≤a2≤…≤an ,且 b1≤b2≤…≤bn
或 a1≥a2≥…≥an ,且 b1≥b2≥…≥bn
则
若 a1≤a2≤…≤an, 而 b1≥b2≥…≥bn ,
则
5) 詹生(Jensen)不等式
设 ai >0, ( i=1,2,…,n), 且 0< r ≤s, 则
6) 伯努利(Bernoulli)不等式
设 a>1 ,自然数 n>1,则
特别,令 ,则
§7 数列与简单级数
1.数列与级数的概念
依照某种规则排列着的一列数a1 , a2 ,…, an ,…称为数列,记作 . an称为数列的通项(或称为一般项),若把一数列用和号连接起来:
a1+a2+…+an+…
则称它为级数,记作 .an称为该级数的通项或称为一般项.
2.等差数列与等差(算术)级数
名称 | 记号或计算公式 |
公差为d(常数)的等差数列 | a1, a1+d, a1+2d, …, a1+(n-1)d , … {a1+(n-1)d} |
等差(算术)级数 | |
通项公式 | an=a1+(n-1)d |
前n项和(部分和) | |
等差中项 |
3.等比数列与等比(几何)级数
名称 | 记号或计算公式 |
公比为q(常数)的等比级数 | a1 , a1q , a1q2, …, a1qn-1, … {a1qn-1} |
等比(几何)级数 | |
通项公式 | an=a1qn-1 |
前n项和(部分和) | |
等比中项 | |
无穷递减等比级数的和 |
4.算术-几何级数
5.调和级数
(1) 若 为等差级数,则a+b+c+…称为调和级数.
(2) 设A、G、H分别为两个数的等差中项、等比中项和调和中项,则AH=G2
6.某些级数的部分和
§8 阶乘、排列、组合、二项与多项式
1.阶乘
定义 | 说明 |
0!=1 | 规定 |
n的阶乘 | |
(-1)!!=0 | 规定 |
奇数的阶乘 | |
0!!=0 | 规定 |
偶数的阶乘 |
注:表中n为自然数
2.排列
(a) 从n个不同的元素中每次取出k个(k≤n)不同的元素,按一定的顺序排成一列,称为排列.其排列种数为:
(b) 特别当k=n时,此排列称为全排列.其排列种数为:
3.组合
(a) 从n个不同的元素中每次取出k个(k≤n)不同的元素,不管其顺序合并成一组,称为组合.其组合种数为:
(b) 组合公式
4.二项与多项式
(a) 二项式公式
(b) 二项式系数,杨辉三角形
我国南宋时期数学家杨辉在他所著的《详解九章算法》(1261年)中记载着有关二项式系数的研究.在二项式公式中分别取n=0, 1, 2 ,…, 6 时,其二项式系数可表示成三角形,称为杨辉三角形.
(a+b)0 | 1 | ||||||||
(a+b)1 | 1 | 1 | |||||||
(a+b)2 | 1 | 2 | 1 | ||||||
(a+b)3 | 1 | 3 | 3 | 1 | |||||
(a+b)4 | 1 | 4 | 6 | 4 | 1 | ||||
(a+b)5 | 1 | 5 | 10 | 10 | 5 | 1 | |||
(a+b)6 | 1 | 6 | 15 | 20 | 15 | 6 | 1 |
(c) 多项式公式
注:和式中每一组(p , q ,…, s)对应一项,数组满足0≤p≤n, 0≤q≤n ,…, 0≤s≤n,且p+q+…+s=n.∑是对于所有这样的数求和.
from: http://202.113.29.3/nankaisource/mathhands/