初等代数(2):不等式、数列与简单级数、阶乘、排列组合、二项式与多项式

本文深入探讨了数学不等式的基本概念、分类及其在不同情境下的应用,包括基本不等式、绝对值不等式、三角函数不等式、指数函数不等式、对数函数不等式、算术平均与几何平均不等式、重要不等式如Cauchy不等式、Herder不等式等,并详细介绍了数列与级数、阶乘、排列、组合、二项与多项式等内容。
摘要由CSDN通过智能技术生成

§6 不等式

 

1.基本不等式

2.有关绝对值的不等式

3.有关三角函数、指数函数、对数函数的不等式

4.算术平均值与几何平均值不等式

5.一些重要不等式

1.基本不等式

  在下面1)~5)各式中,设 a >b, 则

1) a ± c b ± c

2) ac bc (c>0);  ac<bc  (c<0)

3)  , 

4) an>bn ( n>0, a>0, b>0) ; an<bn ( n<0, a>0, b>0)

5)  (n为正整数,a>0,b>0)

6)设  且 bd 同号,则 

2. 有关绝对值的不等式

   (1) 绝对值的定义

  •  实数a的绝对值 

             

                             实数的绝对值是数轴上点到原点的距离.

  •  复数Z=a+bi的模(绝对值):

           

      注:实数的绝对值实际上是复数模(绝对值)的特例.

    (2)  有关绝对值的不等式

      (a) 若b,…, k为任意复数(包含实数),则

        

      (b) 若,b为任意复数(包含实数),则

          

      (c) 若   则

     -bab   特别有  

      (d) 若   则 a>b 或 a<-b

      (e) 

      (f)  若a , b,…,k为任意复数(包含实数),则 

       (g) 若a , b,…,k为任意复数(包含实数),则 

3. 有关三角函数、指数函数、对数函数的不等式  

1) sinx<x<tgx      (0<x< )

2) cosx< <1      (0<x<π )

3)      ( )

4)       (-∞<x<∞, x0 )

5)       ( x>0 )

6)       ( 0<x< )

7)      ( 0<x<1,  x )

8)          ( x≠0 )

9)         ( x<1, x)

10)      (n为自然数,x>0)

11)        ( x0 )

12)     ( x>-1, x0 )

13)         ( x>-1, x0 )

14)    ( x> -1,  x0 )

    特别取      (n为自然数 ), 有

    

15)lnx≤ x-1         ( x>0 )

16)     ( x<1, x0 )

17)       ( n>0, x>0 )

18)       

19)         

(以下各式中Z为复数)

20)      

21)        

22)       

23)        

24)      

4. 算术平均值与几何平均值不等式

      1) 几个数的算术平均值的绝对值不超过这些数的均方根.

        即      

        等号仅当    a1 a… an 时成立.

  2) 设 a1a2,…,an 均为正数,则它们的几何平均值不超过算术平均值.

       即     

       等号仅当    aa2 … = an 时成立.

  3) 对几个正数 a1a2,…, an 的加权平均值

             有

      

       等号仅当   a1 a2 … an 时成立.

  4) 设a1a2,…, an 均为正数, ,则对n个正数的几何平均值有:

         

5. 一些重要不等式

     1) 柯西(Cauchy)不等式

         设  ab ( i=1,2,…,n)为任意实数,则

     

      等号仅当      时成立.

      此不等式说明两矢量内积小于等于两矢量长度之积.

     2) 赫尔德( )不等式

      (a) 设  abli ( i=1,2,n) 为正数,又

   为正数,且  ,则

  

   等号仅当 时成立.

      (b) 设 a, bi i=1,2,…,n) 为正数,又 k>0, k≠1,k’与 共轭,

    即    则

      (k>1)

       ( k<1)

    等号仅当   时成立.

    3)  闵可夫斯基不等式

      设  a>0, bi >0  ( i=1, 2,…,n), 又 r>0, r≠1 ,

      则        (r>1)

     (r<1)

 等号仅当       时成立.

   当 r=2 时,此不等式又称为三角形不等式,表明三角形两边之和大于第三边.

   4) 契比雪夫不等式

         设 a>0, b>0  ( i=1,2,…,n),

     若 a1≤a2≤…≤an ,且 b1≤b2≤…≤bn

     或 a1≥a2≥…≥an ,且 b1≥b2≥…≥bn

     则 

     若 a1≤a2≤…≤an 而 b1≥b2≥…≥bn ,

     则   

    5)  詹生(Jensen)不等式

        设  ai >0, ( i=1,2,…,n), 且 0< r ≤s, 则 

     6) 伯努利(Bernoulli)不等式

     设 a>1 ,自然数 n>1,则 

     特别,令  ,则  






§7 数列与简单级数

1.数列与级数的概念

   依照某种规则排列着的一列数a1 , a2 ,…, a,…称为数列,记作 . an称为数列的通项(或称为一般项),若把一数列用和号连接起来:

        a1+a2++an+

则称它为级数,记作  .an称为该级数的通项或称为一般项.

2.等差数列与等差(算术)级数 

名称

记号或计算公式

公差为d(常数)的等差数列  a1,  a1+d,  a1+2da1+(n-1)d , … 

{a1+(n-1)d}  

等差(算术)级数  
通项公式  an=a1+(n-1)d  
n项和(部分和)
等差中项  

3.等比数列与等比(几何)级数  

名称

记号或计算公式

公比为q(常数)的等比级数  

  a1 ,  a1,  a1q2, …, a1qn-1

  {a1qn-1}  

等比(几何)级数    
通项公式    an=a1qn-1  
n项和(部分和)    
等比中项    
无穷递减等比级数的和    

 

4.算术-几何级数

  

  

5.调和级数

(1)  若  为等差级数,则a+b+c+…称为调和级数.

(2)  设A、G、H分别为两个数的等差中项、等比中项和调和中项,则AH=G2

6.某些级数的部分和

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  

 








§8 阶乘、排列、组合、二项与多项式

1.阶乘

  

定义

说明

  0!=1    规定
      n的阶乘
  (-1)!!=0    规定
  奇数的阶乘

  0!!=0  

  规定
    偶数的阶乘

    注:表中n为自然数

2.排列

(a) 从n个不同的元素中每次取出k个(kn)不同的元素,按一定的顺序排成一列,称为排列.其排列种数为:

    

(b) 特别当k=n时,此排列称为全排列.其排列种数为:

    

3.组合

(a) 从n个不同的元素中每次取出k个(kn)不同的元素,不管其顺序合并成一组,称为组合.其组合种数为:

    

(b) 组合公式

    

    

    

    

4.二项与多项式

(a) 二项式公式

    

(b) 二项式系数,杨辉三角形

我国南宋时期数学家杨辉在他所著的《详解九章算法》(1261年)中记载着有关二项式系数的研究.在二项式公式中分别取n=0, 1, 2 ,…, 6 时,其二项式系数可表示成三角形,称为杨辉三角形.

(a+b)0    1    
(a+b)111
(a+b)2121
(a+b)31331
(a+b)414641
(a+b)515101051
(a+b)61615201561

(c) 多项式公式

和式中每一组(p , q ,…, s)对应一项,数组满足0≤pn,  0≤qn ,…, 0≤sn,且p+q+…+s=n.∑是对于所有这样的数求和.




from: http://202.113.29.3/nankaisource/mathhands/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值