§1 三角形
1.任意三角形各元素及计算公式
符号 | 名称及说明 | 计算公式 |
ΔABC | 以A、B、C三点为顶点的三角形 | |
a、b、c 或BC,CA,AB | 三角形三条边 | a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC |
A、B、C 或∠A,∠B,∠C | 三角形三个内角 | A+B+C=180° |
ha(ADa) hb(BDb) hc(CDc) | 分别是a、b、c边上的高 | ha=bsinC=csinB 类似有hb,hc的计算公式 式中S为三角形面积,p为三角形半周长 |
ma(AEa) mb(BEb) mc(CEc) | 分别是a、b、c边上的中线 | 类似有mb和mc的计算公式 |
ta(AFa) tb(BFb) tc(CFc) | 分别是A、B、C三角的平分线 | 类似有tb和tc的计算公式 |
H | 垂心.三条高的交点 | |
G | 重心.三条中线的交点 | 类似有GEb,GEc的计算公式 |
O内 | 内心(内切圆圆心).三条角平分线的交点. | |
O外 | 外心(外接圆圆心).三边垂直平分线的交点. | |
P | 半周长 | ![]() |
S | ΔABC的面积 | ![]() |
R | 外接圆半径 | ![]() |
r | 内切圆半径 | ![]() |
2.直角三角形
如图,ΔABC中,C=90°
(1)内角计算公式: A+B=C=90°
(2)边长关系式(勾股定理):c2=a2+b2
(3)斜边上的中线长:
(4)两锐角的三角函数关系:
(5)面积公式:
(6)外接圆半径公式: (外接圆圆心O外为AB的中点E)
(7)内切圆半径公式:
3.等腰三角形
如图,ΔABC中,b=c
(1)底角相等,即B=C
(2)底边(BC)上的高、中线及顶角平分线为同一直线(AD).
(3)腰上的中线公式:
(4)底角平分线公式:
(5)面积公式:
(6)外接圆半径公式:
(7)内切圆半径公式:
4.等边三角形
如图,ΔABC中,a=b=c
(1)内角相等:A=B=C=60°
(2)高、中线、角平分线都相等,计算公式:
(3)面积公式:
(4)外接圆半径公式:
(5)内切圆半径公式:
§2 四边形
1.任意四边形各元素及面积计算公式
符号 | 名称及说明 |
a、b、c、d 或AB,BC,CD,DA | 四边形四条边 |
A、B、C、D 或∠A,∠B,∠C,∠D | 四边形四内角 |
e、f 或AC,BD | 四边形两条对角线 |
θ | 两条对角线夹角θ≤90° |
S | 四边形面积 |
![]() | 四边形半周长 |
*四边形面积公式
其中
*当θ=90°(AC⊥BD)时,四边形边长有关系式:a2+c2=b2+d2
2.平行四边形
如图,平行四边形ABCD,AB∥CD, AD∥BC
(1)内角关系:A=C, B=D
A+B=C+D=180°
(2)边长关系:a=c, b=d
(3)高h的计算公式:h=bsinA=bsinB (=dsinA=dsinB)
(4)对角线e、f 的计算公式:
(5)面积计算公式:
(6)重心G为对角线交点
(7)对角线互相平分,即AG=GC,BG=GD
3.矩形
矩形为平行四边形的特殊情况
(1)内角关系:A=B=C=D=90°
(2)对角线长相等,计算公式为:
(3)面积计算公式:S=ab
4.菱形
菱形为平行四边形的特殊情况
(1)边长关系:a=b=c=d
(2)对角线相互垂直切平分,即AC⊥BD,AG=GC,BG=GD
(3)对角线与边长关系:
(4)面积计算公式:
5.梯形
如图,梯形ABCD,AB∥CD
(1)中位线计算公式:EF为梯形ABCD的中位线,m为其长,
(2)面积计算公式:
6.圆内接四边形
如图,四边形ABCD有外接圆,R为外接圆半径
(1)内角公式:A+C=B+D=180°
(2)各线段的比例式:QA:QB=QC:QD AE.EC=BE.ED
(3)对角线公式:
(4)外接圆半径公式:
(5)面积计算公式:
§3 正多边形
符号 意义 n 边数(n≥3) a 正n边形边长 θ 内角 n 圆心角,α=360°/n r 内切圆半径 R 外接圆半径 l 周长,l=na S 面积
1.正多边形的角
*内角:
*内角和:nθ=(n-2)180°(=(n-2))
*外角和=360°(=2)
2.外接圆半径公式
3.内切圆半径公式
4.面积公式
5.边长公式
因此有:正三角形边长:
正方形边长:
正五边形边长:
正六边形边长:
from: http://202.113.29.3/nankaisource/mathhands/