机器学习大神 Michael I. Jordan推荐的书籍Machine Learning Books Suggested by Michael I. Jordan from Berkeley

转载 2016年04月02日 20:18:14

There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.

  • Frequentist Statistics
    1. Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediate-level statistics book.
    2. Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
    3. Lehmann, E. (2004). “Elements of Large-Sample Theory” Springer.—About asymptotics which is a good starting place.
    4. Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
    5. Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
    6. B. Efron (2010) “Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thought-provoking book.
  • Bayesian Statistics
    1. Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
    2. Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
  • Probability Theory
    1. Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediate-level probability book.
    2. Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
    3. Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
  • Optimization
    1. Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
    2. Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
    3. Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
  • Linear Algebra
    1. Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
  • Information Theory
    1. Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
  • Functional Analysis
    1. Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.

Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”


from: https://honglangwang.wordpress.com/2014/12/30/machine-learning-books-suggested-by-michael-i-jordan-from-berkeley/

JSP课程,独家推荐

JSP(Java Server Pages)是由Sun Microsystems公司倡导、许多公司参与一起建立的一种动态网页技术标准。 JSP技术也是java程序员必须要掌握的核心技能之一! 本课程从源代码的角度开始讲解,让大家深刻领会jsp的本质内涵,做到深入浅出,把握本质! 适合对象:学习完serlvet技术,对于JSP感兴趣者
  • 2015年05月25日 14:14

Jordan推荐的书籍

  • chinaliping
  • chinaliping
  • 2013-10-11 22:45:48
  • 670

an introduction to probabilistic graphical models by Michael Jordan

  • 2013年07月08日 23:12
  • 17.4MB
  • 下载

An introduction to probabilistic graphical models(UCB Michael Jordan )

  • 2017年05月30日 11:59
  • 2.06MB
  • 下载

Jordan推荐机器学习书籍

Mike Jordan at Berkeley sent me his list on what people should learn for ML. The list is definitely ...
  • yjn03151111
  • yjn03151111
  • 2014-05-27 00:19:50
  • 610

蚂蚁金服成立科学智囊团,机器学习之父Michael I.Jordan担任主席

蚂蚁金服成立科学智囊团,机器学习之父Michael I.Jordan担任主席 蚂蚁金服 阅读5087  5月27日,乔丹签约蚂蚁金服,不过不是那位...
  • starzhou
  • starzhou
  • 2017-05-31 12:24:13
  • 1507

NLP大神推荐的机器学习入门书单(附大量百度网盘电子书)

继NLP之后,我又开了ML这个大坑。这是因为NLP涉及到太多的ML模型,仅仅拿过来用的话,我实现的HanLP已经快到个人极限了。而模型背后的原理、如何优化、如何并行化等问题,都需要寻根求源才能解决。 ...
  • surgent777
  • surgent777
  • 2016-12-27 14:08:04
  • 23928

机器学习入门心得——书籍、课程推荐

MOOCsCoursera 上 Andrew Ng 的 Machine Learning 课程:适合 Machine Learning 的入门,我当时是研一的上学期听的这个课,学校的课还比较多,那时是...
  • Shingle_
  • Shingle_
  • 2016-07-16 16:00:25
  • 12608

机器学习大神 Michael I. Jordan推荐的书籍Machine Learning Books Suggested by Michael I. Jordan from Berkeley

There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Pro...
  • GarfieldEr007
  • GarfieldEr007
  • 2016-04-02 20:18:14
  • 2110

游戏<em>推荐书籍</em>-游戏策划必读的15本书

本书单推荐了游戏策划,游戏运营从业必读的15本图书,每本都是行业大拿精心<em>推荐的</em>哦。... 算法<em>书籍推荐</em> 立即下载 上传者: air<em>jordan</em>_1122 时间: 2012-11-06 综合...
  • 2018年04月16日 00:00
收藏助手
不良信息举报
您举报文章:机器学习大神 Michael I. Jordan推荐的书籍Machine Learning Books Suggested by Michael I. Jordan from Berkeley
举报原因:
原因补充:

(最多只允许输入30个字)