威力无穷创意无限的3D快速成型技术不仅能直观上满足你瞻仰各种叫得出名与叫不出名来的三维立体几何图形的需求,连神秘莫测的四维图形也难不倒它,瞬间变戏法般捣腾出它们在三维世界的投影来叫你瞠目结舌于几何的惊艳魅力~自觉空间想象无力的同学们还不快来组团观光!
![]()
3D快速成型技术是什么? 别看我看上去挺隆重,但是我却是初级的简陋家用快速成型机Makerbot Cupcake…很高兴认识大家,我的专长是“拔丝”作品,你们很快就能见识到…… Sierpinski分形四面体 ● 在先用一些简单的四边形练手之后,我编写了一些开放面结构的多面体。这是是一个十二面体的正常形状。 ● 但是加工的时候,一些乱七八糟的怪东西(残余的熔融拉丝即)冒出来把开放区域连起来了……就变成这样了——姑且叫它“拔丝十二面体”。 ● 这是用美工刀清理干净以后清爽的十二面体。 ● 这里有一个更困难的挑战:一个包着另一个的、开方菱形面组成的三十面体。 ● 制作出来的成品:虽然美工刀清理的工作量又增大了很多,但是我还是很满意最终效果的。 stlFile1 ● 这是用来制作二十面体的连接器,插的木棍是羊肉串签子。 ● 一共需要12个连接器和30根竹签才能制作一个完整的三十面体。这是 stlFile2 。 ● 这是一个由Vi Hart设计的阿波罗分形垫(Apollonian gasket) ● 这是另一种形式的四面体,由6根有缺口的柱子连接在一起组成。本来我想把它做成一个有解谜概念的模型,做好后发现这东西还是有点太容易组装了,用橡皮筋一固定就装好了。真没悬念呐!就不侮辱各位的智商了… stlFile3 . ● 但是如果做6面体或10面体时采用相同的理念,你就可以得到一个很好的12根棍的解谜模型。这个模型已经相当复杂,以至于相关的细节我写出了单独的一页,有兴趣可以看一下 12 Sticks Puzzle 。 ● 这是一个计划中的双曲面模型。 ● 可是我的第一个Makerbot模型做出来是这样——欧也!拔丝双曲面~……因为步进电机在定位几个位置时出错了。 ● 我把工作电压调高了一点点,又润滑了一下滑块,做出来的双曲面模型就没问题了。不过花了很长时间才用美工刀把讨厌的拉丝切干净。 stlFile4 . ● 这是一个经典的形象思维谜题:“设计一个能紧贴边缘的穿过方形、圆形、和三角形孔洞的物体”——Bingo!答案就是图中的这个楔形物体,它的俯视图是圆的,主视图和侧视图分别是三角形和方形的。 ● 把三个板子用管工PVC水泥胶粘在一起,制作出一个可以演示这个形状三面投影的框架,就可以好好玩你的楔形块了。 ● 最后教大家一个好玩的东西,这是楔形物块完成一半的样子,你会注意到这个物块是中空的。这时我用镊子把两个3毫米的螺帽放到空洞里,等模型完成以后,两个螺帽就被密封在物块里面,摇起来能发出好听的喀啦喀啦的声响。另外万一哪天遇到3毫米螺帽短缺的情况,你知道紧急备用品藏在哪…… ● 这是个用在墙上的调光器旋钮的外表面,基本是一个由菱形组成的九十面体(rhombic enneacontahedron)的一半。注意观察这个多面体上的菱形有两种组合方式。 ● 这个旋钮内部有一个与1/4英寸标准调光器调节杆相匹配的纽帽,其他地方都是掏空的。 ● 制作出来的样子不错吧?这个结构实际看起来会比照片上清晰一点。中间的钮帽在加工完后还粘着不少熔丝,后来用15/64英寸钻头清理干净了,装到墙壁开关上还挺好使。 stlFile5 . ● 这是另外一个墙体开关旋钮的设计。该表面由映射到庞加莱模型(Poincare disk)上的(7,6,6)细分双曲面组成,包裹了大半个球面。看起来非常酷。 stlFile6 ● 这里还有个我做的30根棍的解谜模型。 ● 图中是一个120胞体(120 - cells),是由120个正十二面体组成的四维结构“投影”而成的。该四维结构原本由一个大正十二面体被119个小正十二面体填充组成。但是投影到三维空间时,除了最外层和最内层的两个十二面体还是正十二面体,别的十二面体的角度都产生了必要的扭曲。 ● 这是另一个用Extrude Hone公司的快速成型机,采用ProMetal流程制作的4英寸直径120胞体模型。 ● 这是一个广为流传的分形,是由二维的Sierpinski三角形泛化成的三维物体,通常被叫做Sierpinski 四面体。 ● 比前文提到的120胞体更美的是截角120胞体(truncated 120-cell),由120个截角12面体和600个四面体组成。图中是截角120胞体的正交投影模型,用光固化成型技术制造,直径约6英寸。 ● 这是一种在1937年被数学家Michael Goldberg首次描述的多面体,被命名为Goldberg多面体。图中的多面体直径约8.3英寸,组成它的972个面中,有12个五边形和960个六边形。这是1000个面以下的这类多面体中面最多的一个。据我所知,无论是Michael | ● Goldberg还是别的学者,目前都还没有提出如何计算这类多面体的角度和边长构成才能使它的表面更圆润,我准备写篇论文把这个问题好好论述一下。 stlFile9 ● 上图中是7个可以自由旋转相互不联接的球体。这个模型是在用现代制造技术,向制作同心象牙球的传统艺术致敬。根据这个页面this page的介绍,这项传统艺术始于17世纪的纽伦堡,现在在亚洲的某些国家(比如我国)还在被传承着。 ● 图中是一个由十个等边三角形纠结出的有趣形状,是由Alan Holden首先描述的许多多边形缠结中的一个。 stlFile11 ● 这是两个正二十面体对称的均匀复合多面体(uniform polyhedral compounds)。这些结构在1976年由John skilling首先做出数学描述,我在1999年做出了这两个实体模型,不知有没有人比我先做出来。 ● 这是另一个著名的分形:孟结海绵(Menger sponge)。(确实颇有几分神似海绵宝宝)…图中用熔融层积法(FDM)制作的模型是一个三级分形,也就是说这个分形中有三种不同大小的孔, stlFile14 ● 下面的这幅图展示了被一个六边形截成两半的孟结海绵。这里是制造半个孟结海绵的stl文件,这个用激光烧结技术制作的模型边长是5.5厘米。 stlFile15 ● 图中是用Voroni 单元(Voroni cells) 拼成的四面体和八面体。多面体里的Voroni单元围绕着面心立方晶格点紧密排列。 ● 这是一个两层测地球的4英寸模型。它的外层有260个三角形,内层有12个五边形和120个六边形。据我所知,这是世界上唯一的手性双层测地球(说人话就是:这个测地球不对称。) stlFile16 ● 这个是仰截角二十面体(snub truncated icosahedron),这个模型背后的故事如果算故事的话就是:构成一个足球的五边形和六边形们被三角形组成的手性边界分隔开来。想知道更多?看看这篇 The Snub Truncated Icosahedron 。 ● 如果你爱音乐又爱几何学,这个模型说起来一定相当酷。这是由Clifton Callender、 Ian Quinn和 Dmitri Tymoczko描述的一个代表三和弦的轨形(orbifold)。当然,它抽象掉了所有具体的同和弦换位。 ● 通过把图中这样形状相同的小多面体放在其他该多面体的顶点上,就可以获得分形多面体集群了。 ● 这是一套对Mortan Bradley几何雕塑设计的重建模型。 更多细节在这里 Sculpture of Morton C. Bradley, Jr. 。 ● 首先是由120个等边三角形组成的“elevated icosidodecahedron ” 特意为了这个词语咨询了一下无所不知的matix67同学,得到官方解释如下:Dodecahedron是正十二面体,Icosahedron是正二十面体,Icosidodecahedron是他俩的结合体。就是在这个多面体的每个面上架起相应的三角形、五边形骨架。 ● 第二个是由72个面(24个三角形、48个四边形)构成的球体结构。 ● 这是一个用小单元组装的挠环面模型,原型是在德国某博物馆展出的十六世纪木质工艺品。 ● 用快速成型机复制这类历史物品可以帮助人们更好的了解、研究它们的功能或制作方法……厄…我能管这叫“脊椎形”么。 ● 比如这个,这是一个开放式结构的6层截角三十二面体。 ● 这是一个用激光快速烧结成型法制作的,直径三英寸的球体。该球体由许多个近似菱形组成。鉴于这个球体具有与二十面体相同的旋转对称,但是却没有镜像平面,我觉得它是一个学习空间对称性的好例子。同时它也具有向杰出的数学家、天文学家、器械制造专家:Abraham Sharp致敬的意义。 ● 这是我的一个作品,我把它叫做《纠缠的驯鹿》(私下里我认为,这位大师的所有作品可以被统称为:《纠缠的XX》)。这是一个用激光烧结法制作的直径3英寸模型。灵感来源于我的想象:一群驯鹿如果都头朝外团成一个团子会是什么样子的。 ● 图中是一个由火蜥蜴形状编织的模型,直径2.5英寸,在Objet 333快速成型机上制作。这是我在MIT做驻场艺术家时,为一个群雕项目制作巨型雕塑(a large sculpture)时创作的原型。 ● 这是一个纠结在一起的激光烧结模型,是一件雕塑作品同时也算是一个有解谜概念的模型。2英寸直径的大小实在有些无法展示设计细节,所以如果想动动手的话,可以按照这里this short paper给出的模板制作一个纸模,再用胶带粘起来…… ● 这是一个其结构让人想起海胆的雕。 ● 这个则让人联想到某种螺旋环面生物。这两个都是我在做一个叫做“棘皮动物”的项目时制作的雕塑。 ● 这个雕塑形式来源于A.F.Well在1956年于《立体有机化学》(《The Third Dimension in Chemistry》)一书中对“(10,3)-a”网格的描述。最近该晶体结构由Toshikazu Sunada普及传播,被称做K4晶体。这个结构在各个方向上的投影有着巨大的不同,所以看一定要看多组照片才能看清它复杂的构造。 ● 最后的这件雕塑艺术品与上述作品有着本质区别。这是个看起来像有机体的结构是由一个用来制作生长图形(比如基于细胞结构的生长图形)的算法制作的。 ● 这是一个由20个熔融层积法制作的相同部件组成的解谜模型。 ● 这篇论文描述的算法 Solid-Segment Sculptures ,适用于把一堆线段转换为可以用快速成型机加工的三维模型。有兴趣的同学可以看一下。文中提到的一种用三角形有效包裹线段的方法在前文提到的许多模型中都使用过。 |
此为翻译稿
from: http://blog.sciencenet.cn/blog-4099-673509.html