带3090显卡的Linux服务器上部署SDWebui

本文详细描述了作者在Linux服务器上部署SDWebui的过程,包括创建conda环境、安装依赖、下载模型、编辑launch.py以及设置端口映射,旨在帮助有类似需求的读者解决可能遇到的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

一直在研究文生图,之前一直是用原始模型和diffuser跑SD模型,近来看到不少比较博主在用 SDWebui,于是想着在Linux服务器上部署体验一下,谁知道并没有想象的那么顺利,还是踩了不少坑。记录一下过程,也许能帮忙有同样需求的朋友。

安装

  1. 在Linux服务器上建立conda 虚拟环境及对应目录,并下载代码仓。
conda create -n SDWebui python=3.10.6
conda activate SDWebui
mkdir SDWebui
cd SDWebui
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

在huggingface上下载三个模型文件(sd_xl_base_1.0.safetensors,sd_xl_refiner_1.0.safetensors,sdxl_vae.safetensors),分别放到models下的不同目录下,放完之后,目录结构如下:
在这里插入图片描述
2. 安装依赖环境

python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 xformers
python -m pip install requirements.txt
python -m pip install -r requirements_versions.txt
  1. 下载OpenAI clip相关, 使用国内镜像即可:
mkdir openai
cd openai
git clone https://www.modelscope.cn/AI-ModelScope/clip-vit-large-patch14.git

在这里插入图片描述

  1. 编辑 launch.py文件,在文件的上方插入下面几行:
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
  1. 启动webui
python launch.py --skip-torch-cuda-test --xformers --precision full --no-half --always-batch-cond-uncond --opt-split-attention

在这里插入图片描述

  1. 使用Webui
    6.1 构建本地pc 和 远端服务器的端口映射:
    ssh -L 7860:localhost:7860 用户名@Linux服务器IP
    6.2 打开浏览器,输入http://localhost:7860/ 或者 http://127.0.0.1:7860/, 既可以得到如下页面,开始体验吧。
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值