CodeForces 1K-1600R-1423K

1423K-Lonely Numbers

Description

Link

在这里插入图片描述

Analysis

题意简述

定义:

孤独数:在一个给定的数集 A A A 中的元素 a a a,不存在 b ∈ A b\in A bA,使得 g c d ( a , b ) , a g c d ( a , b ) , b g c d ( a , b ) gcd(a,b),\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)} gcd(a,b),gcd(a,b)a,gcd(a,b)b 能构成三角形的三边长

t t t 组询问( 1 ≤ t ≤ 1 0 6 1\le t\le 10^6 1t106),每组询问给出一个整数 n n n 1 ≤ n ≤ 1 0 6 1\le n\le10^6 1n106),求 [ 1 , n ] [1,n] [1,n] 内孤独数的个数

分析

从简化条件的形式入手,若 a , b , c a,b,c a,b,c 三边能构成三角形,则 k a , k b , k c ( k ≠ 0 ) ka,kb,kc(k\ne0) ka,kb,kc(k=0) 三边也能构成三角形

由此,判断 g c d ( a , b ) , a g c d ( a , b ) , b g c d ( a , b ) gcd(a,b),\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)} gcd(a,b),gcd(a,b)a,gcd(a,b)b 能否构成三角形,可以等价于 g c d 2 ( a , b ) , a , b gcd^2(a,b),a,b gcd2(a,b),a,b 能否构成三角形

-

显然,对于互质的数 a , b a,b a,b g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,则 1 , a , b 1,a,b 1,a,b 必然不可能构成三角形

(实数的三岐性: a , b a,b a,b 必然存在序关系 max ⁡ { a , b } ≥ min ⁡ { a , b } + 1 \max\{a,b\}\ge\min\{a,b\}+1 max{a,b}min{a,b}+1

由此, 1 1 1 一定是孤独数

-

g c d ( a , b ) = g , a = m g , b = n g gcd(a,b)=g,a=mg,b=ng gcd(a,b)=g,a=mg,b=ng,进一步化简条件,可得 g g g 必须满足 max ⁡ { m , n } − min ⁡ { m , n } < g < m + n \max\{m,n\}-\min\{m,n\}< g< m+n max{m,n}min{m,n}<g<m+n

-

对于质数 x x x

其配对的元素一定是其倍数(否则互质, g = 1 g=1 g=1,由上述结论,不可能构成三角形)

讨论 x x x 的配对情况:

a = 1 ⋅ x a=1· x a=1x 出发( m = 1 m=1 m=1),观察其最小的倍数 b = n ⋅ x b=n·x b=nx(即需满足 g = x g=x g=x

若满足 n > g − m n>g-m n>gm,则 n m i n = g − m + 1 = x − 1 + 1 = x n_{min}=g-m+1=x-1+1=x nmin=gm+1=x1+1=x

质数 x x x 不是孤独数,当且仅当 x 2 x^2 x2 处于当前范围中(对于 ∀ k x , 1 ≤ k < x , k + 1 ≤ x \forall kx,1\le k<x,k+1\le x kx,1k<x,k+1x

-

对于合数 y y y

y y y 为质数 y \sqrt y y 的平方,根据上述结论, y y y y \sqrt y y 配对

否则,根据唯一分解定理, y y y 可以表示为 p 1 α 1 p 2 α 2 . . p k α k p_1^{\alpha_1}p_2^{\alpha_2}..p_k^{\alpha_k} p1α1p2α2..pkαk 的形式,其中 p 1 < p 2 < . . . < p k p_1<p_2<...<p_k p1<p2<...<pk a i ≥ 1 a_i\ge1 ai1

a = y = p 1 α 1 p 2 α 2 . . p k α k a=y=p_1^{\alpha_1}p_2^{\alpha_2}..p_k^{\alpha_k} a=y=p1α1p2α2..pkαk b = p 1 ( p 1 α 1 − 1 p 2 α 2 . . p k α k − 1 ) b=p_1(p_1^{\alpha_1-1}p_2^{\alpha_2}..p_k^{\alpha_k}-1) b=p1(p1α11p2α2..pkαk1)

g = p 1 , m = p 1 α 1 − 1 p 2 α 2 . . p k α k , n = p 1 α 1 − 1 p 2 α 2 . . p k α k − 1 g=p_1,m=p_1^{\alpha_1-1}p_2^{\alpha_2}..p_k^{\alpha_k},n=p_1^{\alpha_1-1}p_2^{\alpha_2}..p_k^{\alpha_k}-1 g=p1,m=p1α11p2α2..pkαk,n=p1α11p2α2..pkαk1

m − n = 1 < g m-n=1<g mn=1<g m + n > g m+n>g m+n>g ,则 y y y 必然存在小于 y y y 的数与其配对

即:合数一定不是孤独数

-

由此, [ 1 , n ] [1,n] [1,n] 中孤独数的个数,即 ( n , n ] (\sqrt n,n] (n ,n] 中质数的个数 + 1 +1 +1(包含 1 1 1

只需要筛法预处理 [ 1 , n ] [1,n] [1,n] 中的质数个数,利用前缀和即可 O ( 1 ) O(1) O(1) 求解每个询问

时间复杂度: O ( n ) O(n) O(n) (线性筛法)

Code

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;

constexpr const int N = 1e6 + 15;

int t, n, p[N], f[N], cnt;
bool st[N];

void primes(int x)
{
    for(int i = 2; i <= x; i++)
    {
        if(!st[i])
        {
            p[++cnt] = i;
            f[i] = f[i - 1] + 1;
        }
        else f[i] = f[i - 1];
        for(int j = 1; p[j] <= x / i; j++)
        {
            st[i * p[j]] = 1;
            if(i % p[j] == 0) break;
        }
    }
}

int main()
{
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

    primes(1e6 + 10);
    cin >> t;
    while(t--)
    {
        cin >> n;
        cout << f[n] - f[(int)sqrt(n)] + 1 << '\n';
    }

    return 0;
}

Tag

筛法、前缀和、 g c d gcd gcd、唯一分解定理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值