二叉树的建立和各种遍历(java版)

这是个常见的面试题,比如说通过二叉树的先序和中序遍历,得到二叉树的层序遍历等问题


先序+中序 ->建树

假设现在有个二叉树,如下:
树结构

此时遍历顺序是:

PreOrder: GDAFEMHZ
InOrder: ADEFGHMZ
PostOrder: AEFDHZMG

现在给出先序(preOrder)和中序(InOrder),建立一颗二叉树
或者给出中序(InOrder)和后序(PostOrder), 建立二叉树,其实是一样的

树节点的定义:

class Tree{
    char val;
    Tree left;
    Tree right;

    Tree(char val, Tree left, Tree right){
        this.val = val;
        this.left = left;
        this.right = right;
    }
    Tree(){

    }
    Tree(char val){
        this.val = val;
        this.left = null;
        this.right =null;
    }
}

建树:

public static Tree buildTree(char[] preOrder, char[] inOrder){
        //preOrder是先序序列
        //inOrder是中序序列
        if(preOrder == null || preOrder.length == 0){
            return null;
        }

        Tree root = new Tree(preOrder[0]);
        //找到inOrder中的root的位置
        int inOrderIndex = 0;
        for(char i = 0; i < inOrder.length; i++){
            if(inOrder[i] == root.val){
                inOrderIndex = i;
            }
        }
        //preOrder的左子树和右子树部分
        char[] preOrderLeft = Arrays.copyOfRange(preOrder, 1, 1+inOrderIndex);
        char[] preOrderRight = Arrays.copyOfRange(preOrder, 1+inOrderIndex, preOrder.length);

        //inOrder的左子树和右子树部分
        char[] inOrderLeft = Arrays.copyOfRange(inOrder, 0, inOrderIndex);
        char[] inOrderRight = Arrays.copyOfRange(inOrder, inOrderIndex+1, inOrder.length);

        //递归建立左子树和右子树
        Tree leftChild = buildTree(preOrderLeft, inOrderLeft);
        Tree rightChild = buildTree(preOrderRight, inOrderRight);
        root.left = leftChild;
        root.right = rightChild;

        return root;
    }

中序+后序去建树其实是一样的,此处不写了

各种遍历

后序遍历

public static void postOrderPrint(Tree root){
        //后续遍历
        //左右根
        if(root.left != null){
            postOrderPrint(root.left);
        }
        if(root.right != null){
            postOrderPrint(root.right);
        }
        System.out.print(root.val + " ");
    }

举一反三,先序和中序是一样的,此处不写了

层序遍历

可以用一个队列Queue,初始先把root节点加入到队列,当队列不为空的时候取队列头的节点node,打印node的节点值,如果node的左右孩子不为空将左右孩子加入到队列中即可

public static void layerOrderPrint(Tree root){
        if(root == null){
            return;
        }
        //层序遍历
        Queue<Tree> qe = new LinkedList<Tree>();
        qe.add(root);
        while(!qe.isEmpty()){
            Tree node  = qe.poll();
            System.out.print(node.val + " ");
            if(node.left != null){
                qe.add(node.left);
            }
            if(node.right != null){
                qe.add(node.right);
            }
        }
    }

深度优先和广度优先

其实就是换个说法而已,深度优先不就是先序遍历嘛,广度优先就是层序遍历

public static void deepFirstPrint(Tree root){
        //深度优先遍历等价于先序遍历
        //所以可以直接使用先序遍历
        if(root == null){
            return;
        }
        System.out.print(root.val + " ");
        if(root.left != null){
            deepFirstPrint(root.left);
        }
        if(root.right != null){
            deepFirstPrint(root.right);
        }
    }

public static void deepFirstPrintNoneRec(Tree root){
        //深度优先遍历的非递归形式
        if(root == null){
            return;
        }
        Stack<Tree> st = new Stack<Tree>();
        st.add(root);
        while(!st.isEmpty()){
            Tree node = st.pop();
            System.out.print(node.val + " ");
            //栈是后进先出的
            //先加右孩子后加左孩子
            if(node.right != null){
                st.add(node.right);
            }
            if(node.left != null){
                st.add(node.left);
            }
        }
    }

main函数:

public static void main(String[] args) {
        char[] preOrder = "GDAFEMHZ".toCharArray();
        char[] inOrder = "ADEFGHMZ".toCharArray();
        Tree root = Main.buildTree(preOrder, inOrder);
//      Main.postOrderPrint(root); //后序遍历
//      Main.layerOrderPrint(root); //层序遍历
//      Main.deepFirstPrint(root); //深度优先遍历
//      Main.deepFirstPrintNoneRec(root); //深度优先遍历的非递归版本
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值