【JY】板壳单元的分析详解

不等待

即关注

简介

    板壳是平板和壳体的总称,是最常见的物体形式。其外形特点是厚度比其余两个方向尺寸在数量级上小得多。平分物体厚度的分界面称为中面。若中面是平面,则称此物体为平板;若中面是曲面,则称此物体为壳体。(注意,此处和软件中的板单元、壳单元非同个概念)

为什么要研究板壳单元?

    由于厚度小、质量轻、耗材少、性能好,使板壳成为具有优良特性的结构元件,不仅广泛应用于各种工程结构作为最基本和最主要的构件,而且在自然界和日常生活中也常常碰见,它们与每个人的生活休戚相关,与人类的生存紧密相连。

    人们希望建立一种这样的板弯曲单元,即厚薄板通用单元。这将为工程计算与理论研究带来极大的便利。希望建立一种单元,同时又希望当厚度趋向薄的情形时,该单元的解也能趋于薄板的解。表面上,这对有限元法而言,容易实现,而实际上,当厚度趋于零时,并不能收敛于薄板数值解,出现所谓的剪切闭锁现象。(剪切锁死(shear locking),简单地说就是在理论上没有剪切变形的单元中发生了剪切变形,该剪切变形也常称伴生剪切。)

板壳单元分析的历史

    板壳结构的分析的故事起源于18世纪,Euler最先探索了板的弯曲问题。1850年,Kirchoff给出了第一个完善的薄板弯曲理论,接着Aron(1874)做了薄壳的分析工作。1945年Reissner放松了Kirchhoff假设,考虑了横向剪切变形的影响,因而,使其能够应用于中厚板壳,随后Mindlin(1951)也以略为不同的方式放松了该假设。

    1977年,Hughes首先提出基于Mindlin理论的双线性四节点四边形板单元。该单元考虑横向剪切效应,因此适于中厚板,同时若选择适当的高斯积分点,亦可分析薄板问题。但是当板较厚时,由于存在零能模式使计算结果出现震荡,为此Hughes提出修正积分法。(零能模式(zero-energy mode):采用一阶减缩积分时会出现零能模式,即单元只有一个积分点,在受弯时该积分点没有任何的应变能,此时此单元没有任何刚度,就无法抵抗变形。)

    板壳结构是三维实体结构的特殊形式,为了简化求解,远在实体单元可行之前,就引入了几种经典的假设对板壳单元进行计算,其中以Kirchhoff假设和Reissner-Mindlin假设的两类板壳理论最为常用。

Kirchhoff (基尔霍夫) 薄板壳理论

    基于Kirchhoff假设的经典薄板壳理论,忽略了剪切变形的影响,常适用于薄板壳结构分析;

    Kirchhoff理论的基本假设有三个:

    (1)平行于壳中面的各层互不挤压;

    (2)直法线假定:变形前垂直于中面的直线段,在变形后仍保持为直线且垂直于变形后的中面,这相当于忽略横向剪切变形;

    (3)中面内无平行于中面的位移。

    基于上面的假定,我们可以理解为板上的直线元最初垂直于中面,变形后它仍然垂直于变形后的中面;中面上的所有纤维是不可伸长的。从上可以得到通过该理论来推出这个薄变形体的近似数学理论,如果薄板任一部分的线性尺寸和截面尺寸的大小是同一数量级的,那么一般弹性力学方程在它的任何一个微小部分都适用。这段薄板的运动方程可以由其变形运动学的一阶近似简化得到。

Reissner-Mindlin (瑞斯纳-明德林) 中厚板壳理论

     基于Reissner-Mindlin假设的中厚板壳理论,则考虑了剪切变形的影响,适用于中等厚度的板壳结构分析。

    (注意:很厚很厚的实体块(如坝体),可用实体单元,也可视问题简化采用平面应变/平面应力)

    Mindlin/Reissner 理论的基本假定是:

    (1)与壳的厚度相比,位移是微小的;

    (2)垂直于中面的应力忽略不计;

    (3)变形前垂直于中面的直线,变形后仍保持为直线,但不一定再垂直于中面;

    (4)挠度和法线转角为各自独立的场函数。

    经典的板壳理论是基于Kirchhoff假设的,忽略了横向剪切变形对板、壳变形的影响,能很好的处理薄的板壳问题,但随着厚度的增加,会产生很大的误差。可见Mindlin/Reissner 壳保持了一些Kirchhoff壳的特点,但由于不忽略剪切变形,使变形前垂直于中面的直线变形后不再垂直于中面,转角变形中应包括非均匀的平均剪切变形。

    Mindlin/Reissner 理论其中比较典型的有三种:①Reissner理论;②Mindlin理论;③高阶剪切变形理论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值